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ABSTRACT 
 
As pose estimation has garnered considerable attention for kinematic analysis, numerous pose estimation models 
have been developed in recent times. A pose estimation model is a trained neural network that predicts human body 
landmarks from an image. Each model contains different strong and weak points, which make it difficult for users to 
decide which model to use for kinematic analysis. The accuracy of the model can be one big factor for model selection, 
but there are not many studies investigating this critical point. Therefore, this study aims to investigate the accuracy of 
different models and variants by comparing the measurements from the models and variants against reference 
measurements. Five male participants were invited to this study. Each participant was asked to perform five exercises: 
squat, squat jump, counter movement jump, walk, and jog while being recorded by twelve normal RGB cameras 
(Contemplas) and ten marker-based tracking cameras (VICON). The video recordings from the Contemplas were 
processed by six different pose estimation models and variants: Mediapipe, MeTRAbs Small, MeTRAbs X Large, 
YOLO, MoveNet Lightning, and MoveNet Thunder to detect joint positions. From the detected joint positions, four joint 
angles, left hip, right hip, left knee, and right knee, were calculated. Three-way repeated measures ANOVA and Tukey 
HSD post-hoc analysis were applied to compare the pose estimation models with VICON measurements. The ANOVA 
result showed that exercise and model factors had a significant impact on the measurement errors although angle 
factor did not. In the post-hoc analysis, knee joint angle errors from YOLO, MoveNet Lightning, and MoveNet Thunder 
in jog and walk were significantly higher than those from Mediapipe, MeTRAbs Small, and MeTRAbs X Large. In 
conclusion, differentiated recommendations can be given for optimum model and variant choice in different conditions 
in kinematic analyses. 
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INTRODUCTION 
 
Motion capture 
Motion capture is a widespread method to analyse human kinematics. There are mainly three types of motion 
capture systems: optoelectrical systems, inertial measurement unit (IMU) systems, and video-based 
systems. 
 
The optoelectrical systems use reflection markers and infrared cameras to capture human movements. An 
example is VICON (VICON Motion Systems Ltd., Oxford, the UK). The system is highly accurate and 
considered a gold standard measurement for kinematic analysis. Indeed, many studies use this system as a 
reference to validate measurements of new devices (Fukushima et al., 2024; Jeong et al., 2024; Merker et 
al., 2023; Trowell et al., 2024). The main concern of using this system is accessibility. The system is 
expensive and needs a proper laboratory environment. For example, since it captures the reflection of 
infrared markers, other infrared sources such as sunlight must be shut down. In addition, there are some 
risks of errors. One is the misplacement of markers. A previous paper simulated the marker misplacement 
effects with random anterior–posterior displacements of lateral thigh (THI), lateral femoral epicondyle (KNE), 
and tibial (TIB) markers on the assessment of inter-limb differences during a 90° change of direction (CoD) 
(McFadden et al., 2021). Using Gaussian distributions with standard deviations of 5.8 mm (THI), 3.9 mm 
(KNE), and 3.4 mm (TIB), the authors quantified the resultant kinematic variability. The 95% confidence 
intervals attributable solely to marker misplacement ranged from ±2.5° (hip and ankle flexion) to ±13.4° 
(knee rotation) and ±12.5° (ankle rotation). Another concern is marker occlusion. A study investigated how 
marker occlusions of marker-based motion capture systems influence marker displacements and distort inter-
marker distances (IMD) in static and dynamic settings (Conconi et al., 2021). They found that, in static tests, 
partial occlusions produced maximum marker displacements of around 1.8 mm, while total occlusions 
produced smaller displacements of around 0.45 mm. In dynamic tests replicating gait-like motion, maximum 
IMD variation due to occlusion reached 7.20 mm. Moreover, marker movement on the skin, called soft tissue 
artefact, can affect motion capture accuracy. A study quantified the artefact of a marker-based motion capture 
system using segment length variation and apparent joint dislocations during walking, jumping, and sit-to-
stand transitions (Bousigues et al., 2025). They found that the segment length variation reached up to 7%, 
with the thigh segment exhibiting the greatest variability across tasks. Also, apparent joint dislocations were 
considerable, with mean values of 40.8 mm at the hip (range: 1.1–159.7 mm), 10.9 mm at the knee (range: 
0.3–52.8 mm), and 3.4 mm at the ankle (range: 0.1–20.6 mm). 
 
The IMU consists of an accelerometer, gyroscope, and magnetometer. By combining several IMUs, an IMU 
system can capture human motions. Xsens motion capture suit (Xsens Technologies B.V., Enschede, 
Netherlands) is one of the examples of IMU systems. These systems are also often used in validation studies 
(English et al., 2023; Islam et al., 2020; Leung et al., 2024). Compared to optoelectronic systems, the capture 
volume is wider in IMU systems, meaning that motion data are collected as long as the IMU sensors are 
attached to the body. However, data can be negatively affected when magnetic forces are in the environment. 
Also, due to the characteristics of integration to measure positions of the human body, a drift error can cause 
gradual shifts of the actual position data, making it hard to get speed data or absolute positions, for example. 
 
The video-based systems detect either objects or human body landmarks from images or videos. 
Traditionally, objects or human body landmarks were manually annotated and used as a gold standard 
measurement (Menychtas et al., 2023; Reilly et al., 2021). Due to the advancement of computer vision and 
machine learning research fields, artificial intelligence (AI) can perform the latter task, called pose estimation. 
Compared to the optoelectronic and IMU-based systems, these systems are more accessible and affordable 
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since they only require running AI, i.e., a pose estimation model, on images or videos. However, these 
systems have not been well validated for kinematic analysis although there are some studies to validate the 
system for kinematic analysis in certain movements (Aleksic et al., 2024; D’Haene et al., 2024; Fukushima 
et al., 2024). 
 
Pose estimation model 
A pose estimation model is a trained neural network or algorithm that takes input images or videos and 
predicts human body landmarks or body poses. There are several pose estimation models and variants that 
are publicly available, for example, Mediapipe pose landmark detection (Grishchenko et al., 2022), YOLO-
pose (Maji et al., 2022), MoveNet (TensorFlow, n.d.-a; TensorFlow, n.d.-b), and MeTRAbs (Sarandi et al., 
2021). Each model and variant contains distinct characteristics, ranging from mobile application integration 
to absolute three-dimensional (3D) estimation. 
 
The Mediapipe pose landmark detection is based on a model called BlazePose (Grishchenko et al., 2022). 
According to the paper, the model follows a detector–tracker pipeline that first identifies a region of interest 
containing the human subject and then performs inference to extract 33 two-dimensional (2D) and three-
dimensional (3D) landmarks. The core of the model leverages a statistical 3D human mesh representation 
(GHUM) that captures realistic body shapes and articulations. Ground-truth 3D annotations were generated 
by fitting the GHUM model to a diverse dataset of 2D human pose annotations spanning multiple physical 
activities (e.g., yoga, fitness, dance). This fitting process employed additional depth-ordering annotations to 
mitigate the inherent ambiguity in monocular 3D reconstruction. There are three model types: Lite, Full, and 
Heavy. On a desktop system equipped with an Intel i9-10900K CPU and NVIDIA GTX 1070 GPU, the Lite, 
Full, and Heavy variants achieve average inference latencies of 7 ms, 8 ms, and 10 ms per frame, 
respectively. For mobile deployment, tests conducted on a Google Pixel 4 indicate that the model executes 
in 25–147 ms on the CPU and 8–22 ms on the GPU, depending on the variant. In-browser inference on a 
15-inch MacBook Pro (2017) yields frame processing times of 13 ms (Lite), 15 ms (Full), and 29 ms (Heavy). 
The Lite model is the fastest but least accurate; in contrast, the Heavy model is the slowest but most accurate. 
It is available for mobile and web application development through the Mediapipe or ML Kit application 
programming interfaces (APIs). 
 
The YOLO-pose model regresses 2D landmarks associated with each detected person, thereby eliminating 
the need for post-hoc landmark grouping or non-differentiable post-processing steps. Its backbone extracts 
multi-scale visual features from the input image; these features are then aggregated using a Path Aggregation 
Network (PANet), which facilitates feature fusion across different resolutions to improve localization accuracy 
for objects and landmarks at various scales. The YOLO-pose model is trained on pose landmarks from the 
COCO dataset (Lin et al., 2014). It can detect 17 landmarks in 2D. The YOLO-pose model is accessible 
through Ultralytics (Jocher et al., 2023) and can easily be trained with custom datasets for transfer learning 
and fine-tuning within its framework, allowing users to customize pose estimation for specific applications. 
Depending on the model variant, different sizes are available; smaller models offer faster inference but lower 
accuracy, while larger models provide higher accuracy at the cost of slower processing. 
 
MoveNet uses MobileNetV2 (Sandler et al., 2018) as its feature extractor, which is well-suited for mobile 
inference due to its depth-wise separable convolutions and low parameter count. This backbone is 
augmented with a Feature Pyramid Network (FPN; Lin et al., 2016) to enable multi-scale feature aggregation, 
enhancing the model’s robustness to scale variations and occlusions commonly encountered in 
unconstrained environments. MoveNet is designed for speed, operating in a single forward pass rather than 
relying on multi-stage refinement or post-hoc grouping of detected landmarks. MoveNet offers two models: 
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Thunder and Lightning. The Thunder model is slower but more accurate than the Lightning model. Both 
models can detect 17 2D landmarks. TensorFlow provides a platform that enables users to run MoveNet on 
web, desktop, and mobile applications (Abadi et al., 2015). 
 
The MeTRAbs model uses a backbone such as ResNet (He et al., 2015), EfficientNet (Tan & Le, 2019), or 
MobileNet (Lin et al., 2016) as a fully convolutional network (FCN) without additional decoder modules to 
extract features from an input image. The output is a set of volumetric heatmaps—one for each joint—where 
each heatmap voxel corresponds to a fixed physical location in 3D metric space. The model applies a soft -
argmax operation across the 3D heatmap volume to regress continuous joint coordinates in millimetres. 
MeTRAbs is trained on both 2D and 3D landmarks from publicly available datasets. Several model variants 
exist, distinguished by backbone type, model size, and dataset configurations. Unlike the Mediapipe pose 
landmark detection, which estimates depth relative to the middle-hip point, MeTRAbs can detect absolute 3D 
coordinates. It can also detect landmarks using different topologies, such as the COCO topology, the SMPL 
topology (Loper et al., 2015), or the Kinect topology (Microsoft, Redmond, WA). 
 
State of the art of pose estimation validation 
There are several studies that have investigated the validity of pose estimation models. One study found a 
mean absolute error of up to 9.9 degrees during gait using OpenPose (D’Antonio et al., 2020). A previous 
validation study also used OpenPose for athletic and sports movements and reported errors of 9.7 ± 4.7 
degrees and 9.0 ± 3.3 degrees, respectively (Fukushima et al., 2024). Another study examined the validity 
of OpenCap for lower-body movements and found errors between 11.6 and 14.7 degrees (Lima et al., 2023), 
although a similar study reported lower errors between 1.91 and 6.87 degrees (Turner et al., 2024). One 
study compared the accuracy of four different models and variants—OpenPose, MoveNet Lightning, 
MoveNet Thunder, and DeepLabCut—during gait using a marker-based motion capture system 
(Washabaugh et al., 2022). They found errors of 3.7 ± 1.3°, 4.6 ± 1.8°, 6.8 ± 1.6°, and 5.9 ± 3.6° for 
OpenPose, MoveNet Thunder, DeepLabCut, and MoveNet Lightning, respectively, at the hip joint angle. For 
knee joint angles, the errors were 5.1 ± 2.5°, 7.5 ± 2.5°, 9.4 ± 2.4°, and 9.1 ± 3.0° for OpenPose, MoveNet 
Thunder, DeepLabCut, and MoveNet Lightning, respectively. Another study investigated the accuracy of 
OpenPose, AlphaPose, and DeepLabCut during walking, running, and jump tasks using a marker-based 
motion capture system (Needham et al., 2021). They found errors of approximately 30–50 mm at the knee 
and hip points, whereas ankle point errors ranged from 1 to 15 mm. 
 
Aim 
Considering the challenges of using a gold standard measurement for kinematic analysis, pose estimation 
models can potentially be a replacement for optoelectronic systems and IMU systems. However, the pose 
estimation models need to be validated before their use for kinematic analysis. Also, each available model 
and variant should be compared to find the best model and variant for kinematic analysis. Therefore, this 
study aims to validate pose estimation models and variants by using a gold standard measurement for lower 
limbs and to compare the accuracy of each model and variant. 
 
METHODS 
 
Participants 
In total, five male participants (Age (mean ± standard deviation): 30.2 ± 6.6 years old, Height: 176.2 ± 6.7 
cm, Body mass: 74.2 ± 9.1 kg) participated in this study. 
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Test exercises 
Each participant was asked to perform five exercises: a squat (Figure 1), squat jump (Figure 2), counter 
movement jump (Figure 3), walk (Figure 4), and jog (Figure 5) two times. The exercises were selected 
because they were investigated in previous validation studies (D’Antonio et al., 2020; Fukushima et al., 2024; 
Lima et al., 2023; Turner et al., 2024). They are also commonly used for gait and performance analysis. 

 
 

Figure 1. Squat. 
 

 
 

Figure 2. Squat jump. 
 

 
 



Fukushima, et al. / Pose estimation models validated for lower-body kinematics                 Scientific Journal of Sport and Performance 

258 | 2026 | ISSUE 2 | VOLUME 5                                                                           © 2026 ARD Asociación Española 

 

Figure 3. Counter movement jump. 

 
 

Figure 4. Walk. 
 

 
 

Figure 5. Jog. 
 
Set-ups 
To validate the measurements from pose estimation models and variants, two different arrays of cameras 
were prepared. One is Contemplas cameras “ab Baumer VLXT-31C" (CONTEMPLAS GmbH., Kempten, 
Germany), and the other is VICON cameras. Figure 6 shows the camera setups. 
 
For the VICON system, used as a gold standard, reflecting markers were placed on the body based on the 
VICON Plug-in Gait model (“Full body modelling with Plug-in Gait,” n.d.). In total, ten VICON infrared cameras 
were calibrated using a VICON calibration wand and VICON NEXUS software. Two cameras had a sensor 
size of 1024 × 1024, two others had a sensor size of 2048 × 1088, and six cameras had a sensor size of 
2432 × 2048. All cameras had a sampling rate of 100 Hz. After data collection using the VICON system, the 
3D central points of the left and right wrists, elbows, shoulders, hips, knees, and ankles were estimated from 
detected marker points and extracted using the VICON NEXUS software. 
 
For the Contemplas system, used as input for the pose estimation models, twelve Contemplas cameras with 
a resolution of 2048 × 1536 pixels and a frame rate of 100 Hz were calibrated with a calibration cage 
consisting of twelve markers as 3D reference points. Three reflective markers were affixed to each vertical 
pole of the calibration cage at equal intervals, spanning from ground level up to a height of 100 cm. The 
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horizontal spacing between adjacent markers was set at 100 cm. For each marker with known 3D 
coordinates, the corresponding 2D image coordinates were manually annotated in each camera view. A 
projection matrix for each camera was initially estimated using the Direct Linear Transformation (DLT) method 
(Molnár, 2010) and subsequently refined through bundle adjustment optimization (Triggs et al., 2000) to 
improve the accuracy of the camera calibration. 
 

 
 

Figure 6. Camera setup. White cameras: Contemplas cameras, Blue cameras: VICON infrared cameras. 
 
Each 3D point was matched with a 2D point observed from each Contemplas camera. The matched point 
pairs were processed using the Direct Linear Transformation (DLT) method (Molnár, 2010) to compute a 
projection matrix. Six pose estimation models and variants—MeTRAbs EfficientNet backbone X Large 
(MeTRAbs X Large) and Small models (MeTRAbs Small), MoveNet Thunder and Lightning models, the 
YOLOv8-pose model (YOLO), and the Mediapipe full pose landmark detection model (Mediapipe)—were run 
on the videos recorded from the Contemplas cameras to detect landmarks. Missing landmarks were linearly 
interpolated from the same point in adjacent frames. Figure 7 shows the skeleton overlay on a video frame 
and the stick figure derived from VICON data. The detected landmarks were then triangulated using the 
computed projection matrix to reconstruct the landmarks in 3D (Hartley & Sturm, 1997). 
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Figure 7 Visual comparison between pose estimation and VICON data. a: Raw video frame, b: Skeleton 
overlay on video frame, c: Stick figure of VICON data. 
The reconstructed 3D landmarks and VICON 3D data points were used to calculate right and left knee and 
hip joint angles using Equation (1). 
 

𝜃  =  𝑎 tan 2𝑑(||𝑉1  ×  𝑉2||, (𝑉1  ∙  𝑉2))             (1) 

 
where V1 is a 3D vector of the 3D joint position of interest and its proximal adjacent 3D joint position. V2 is a 
3D vector of the 3D joint position of interest and its distal adjacent 3D joint position. 
 
The recording time of measurements was synchronized by dropping a reflection ball and finding the frame in 
which the ball hit the ground. The study investigated only knee and hip angles since these angles are key to 
the selected exercises. 
 
Statistics 
For each joint angle, the mean error and mean absolute error for the VICON angle were calculated over the 
course of each exercise. Thus, measurement errors for six models and variants, five exercises, and four joint 
angles were analysed. The two trials were averaged to get a single mean value. A three-way (6 x 5 x 4) 
repeated measures ANOVA was run to find significant factors and interactions using the mean absolute error. 
A post-hoc Tukey HSD was conducted to obtain specific differences between single cells. Bland-Altman plots 
were used to quantitatively and qualitatively evaluate the overall errors and biases of each model and variant 
measurement against the VICON measurement. Python 3.10 was used to compute all data analysis and 
statistics. 
 
Ethics 
This study was conducted by following the ethical guidelines of the Technical University of Munich and the 
Declaration of Helsinki. All participants signed a consent form to participate in this research. 
 
RESULTS 
 
Table 1 shows the results of the Three-way Repeated Measures ANOVA. The main factor exercise and 
model were highly significant (p < .001), but the main factor angle was not (p = .301). Regarding the exercise 
factor, the errors were especially different between ipsilateral exercises, which are squat, squat jump, and 
counter movement jump, and contralateral exercises, which are jog and walk. The contralateral exercises 
showed higher errors than the ipsilateral exercises overall. The marginal mean error of the exercise factor 
was 9.2, 9.5, 7.7, 10.8, and 11.7 degrees in counter movement jump, jog, squat, squat jump, and walk, 
respectively. 
 
In the model factor, the error was higher in YOLO, MoveNet Lightning, and MoveNet Thunder in the ipsilateral 
exercises compared to those in the contralateral exercises, but the opposite was mostly true in the other 
models and variants. The marginal mean error of the model factor was 7.7, 7.3, 7.4, 11.6, 11.1, and 13.7 
degrees in Mediapipe, MeTRAbs Small, MeTRAbs X Large, MoveNet Lightning, MoveNet Thunder, and 
YOLO. 
 
Figure 8 shows the marginal mean errors for the interactions between models and exercises, as well as 
models and joint angles. MoveNet Thunder was erroneous as YOLO and MoveNet Lightning in walk and jog, 
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but it was as accurate as Mediapipe, MeTRAbs X Large, and MeTRAbs Small in other exercises. Also, all 
models except for YOLO showed a similar error in the counter-movement jump. 
In the marginal mean error by models and joint angles, Mediapipe, MeTRAbs X Large, and MeTRAbs Small 
showed a similar error pattern. In all cases, the YOLO model showed the highest error. Whereas the marginal 
means of the errors in knee angles were higher than in hip angles for MoveNet Lightning, MoveNet Thunder, 
and YOLO, they were lower for Mediapipe, MeTRAbs Small, MeTRAbs X Large thus accounting for the highly 
significant interaction between factors model and exercise. 
 
Table 1. Three-way Repeated Measures ANOVA result. 

 F DF p 

Model 35.0 5 <.001 
Exercise 10.8 4 <.001 
Angle 1.4 3 .301 
Model x exercise 24.8 20 <.001 
Model x angle 5.2 15 <.001 
Exercise x angle 26.9 12 <.001 
Model x exercise x angle 10.5 60 <.001 

Note. F = F-statistic, DF = Degree of freedom, p = p-value. 

 

 
 
Figure 8. Marginal mean error by Model and Exercise, as well as Model and Angle. CMJ = Counter movement 
jump. 
 
Table 2 shows selected post-hoc comparisons (total number of post-hoc comparisons = 7140). The 
comparison pair comes from 120 unique combinations of 6 models and variants, 5 exercises, and 4 joint 
angles. Then, the possible pair of the combination is (120×119) / 2 = 7140. The analyses compare mean 
absolute errors between Mediapipe, MeTRAbs Small, MeTRAbs X Large and YOLO, MoveNet Lightning, 
MoveNet Thunder in jog. All the pairs between Mediapipe, MeTRAbs Small, MeTRAbs X Large and YOLO, 
MoveNet Lightning, MoveNet Thunder in jog at knee angle were statistically significantly different although 
this was not the case for hip angles. The same scheme of results was found in the walk (not reported here). 
However, no statistically significant differences were found in squat, squat jump, and counter movement jump 
within the model factor. 
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Table 2. Post-hoc analysis between model 1,2,3 vs model 4,5,6 in jog. 

Group1 Group2 Mean Diff (deg) p-adj Lower CL (deg) Upper CL (deg) 

Mod1Exc5Ang3 Mod4Exc5Ang3 12.9 <.001 4.8 21.0 
Mod1Exc5Ang3 Mod5Exc5Ang3 13.7 <.001 5.6 21.8 
Mod1Exc5Ang3 Mod6Exc5Ang3 14.1 <.001 6.0 22.2 
Mod2Exc5Ang3 Mod4Exc5Ang3 13.5 <.001 5.4 21.5 
Mod2Exc5Ang3 Mod5Exc5Ang3 14.2 <.001 6.2 22.3 
Mod2Exc5Ang3 Mod6Exc5Ang3 14.6 <.001 6.6 22.7 
Mod3Exc5Ang3 Mod4Exc5Ang3 14.4 <.001 6.3 22.5 
Mod3Exc5Ang3 Mod5Exc5Ang3 15.2 <.001 7.1 23.2 
Mod3Exc5Ang3 Mod6Exc5Ang3 15.6 <.001 7.5 23.6 
Mod1Exc5Ang1 Mod4Exc5Ang1 6.9 .372 -1.2 14.9 
Mod1Exc5Ang1 Mod5Exc5Ang1 5.7 .885 -2.3 13.8 
Mod1Exc5Ang1 Mod6Exc5Ang1 4.5 1.000 -3.5 12.6 
Mod2Exc5Ang1 Mod4Exc5Ang1 7.5 .135 -0.5 15.6 
Mod2Exc5Ang1 Mod5Exc5Ang1 6.4 .587 -1.6 14.5 
Mod2Exc5Ang1 Mod6Exc5Ang1 5.2 .979 -2.8 13.3 
Mod3Exc5Ang1 Mod4Exc5Ang1 8.0 .053 0.0 16.1 
Mod3Exc5Ang1 Mod5Exc5Ang1 6.9 .340 -1.1 15.0 
Mod3Exc5Ang1 Mod6Exc5Ang1 5.7 .887 -2.3 13.8 

Note. Mod1 = Mediapipe, Mod2 = MeTRAbs Small, Mod3 = MeTRAbs X Large, Mod4 = MoveNet Lightning, Mod5 = MoveNet 
Thunder, Mod6 = YOLOpose, Exc5 = jog, Ang3 = Right Knee Angle, Ang1 = Right Hip Angle, p-adj = adjusted p-value, CL = 
Confidence intervals, Mean Diff = Mean difference. 

 
Figure 9 visually summarizes the mean absolute errors across all the exercises, joint angles, and models. 
The mean absolute differences between Mediapipe, MeTRAbs Small, MeTRAbs X Large and YOLO, 
MoveNet Lightning, MoveNet Thunder in walk and jog were more than 10 degrees. 
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Figure 9. Mean absolute error of all the exercises, joint angles, and models. 

Figure 10 shows box plots of mean errors in addition to mean absolute errors reported so far across all the 
exercises, joint angles, and models. Most of the mean errors were slightly negative. The whisker lines and 
boxes in YOLO, MoveNet Lightning, and MoveNet Thunder in jog and walk were relatively long compared to 
others. The mean and standard deviation of the whisker lower and upper values for those models and 
exercises were –48.2 ± 12.9 and 39.7 ± 11.6 degrees, respectively. The mean and standard deviation of the 
whisker lower and upper values for other models and exercises were –21.0 ± 4.8 and 5.8 ± 4.1 degrees, 
respectively. 
 

 
 
Figure 10. Box plot of mean error ± SD of all the exercises, joint angles, and models. The box represents the 
Interquartile range. The whisker represents the maximum and minimum range without outliers. 
 
Figure 11 represents the Bland-Altman plot for each model and variant measurements against VICON 
measurements. The results revealed a consistent positive bias across all models, indicating that predicted 
joint angles tended to be overestimated relative to the VICON reference. The mean differences (biases) 
ranged from +4.51° (MoveNet Thunder) to +6.61° (YOLO), with all models exhibiting limits of agreement 
exceeding ±50°, suggesting substantial variability in joint angle estimation. Notably, MeTRAbs Small and 
MeTRAbs XL demonstrated the narrowest limits of agreement (~±55–60°) and relatively consistent bias 
across the range of motion, indicating more stable agreement with the gold standard. In contrast, YOLO and 
MoveNet Lightning showed wider limits of agreement (up to ±75°), reflecting greater inconsistency and 
variability in joint angle predictions. Across most models, the Bland–Altman plots exhibited a diamond-shaped 
distribution, with larger errors observed at mid-range joint angles (~90–110°) and smaller errors at the 
extremes. This pattern suggests the presence of non-linear systematic bias, likely due to increased joint 
occlusion and model instability during high-flexion movements. While proportional bias was visually evident 
in some models (e.g., YOLO), formal regression analysis would be required to statistically confirm such 
trends. 
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Figure 11. Bland-Altman plot for each model and variant vs VICON measurements. 
 
DISCUSSION 
 
The errors from the Mediapipe, MeTRAbs Small, and MeTRAbs X Large models were within the range 
reported in previous studies, which was around 9 degrees (D’Antonio et al., 2020; Fukushima et al., 2024). 
However, YOLO, MoveNet Lightning, and MoveNet Thunder showed more than 10 degrees of error in 
walking and jogging. Another study reported errors of only 4.6 ± 1.8° and 5.9 ± 3.6° for hip joint angles in 
MoveNet Thunder and Lightning, respectively (Washabaugh et al., 2022). The same study also found 7.5 ± 
2.5° and 9.1 ± 3.0° errors for knee joint angles in MoveNet Thunder and Lightning, respectively, which is 
lower than the findings of the present study. YOLO was the most erroneous among all models across most 
exercises and joint angles. 
 
In the three-way repeated measures ANOVA, the model and exercise factors were statistically significant, 
but the angle factor was not (Table 1). This indicates that the model and exercise have a significant impact 
on measurement errors, whereas the errors do not depend on the specific joint angle evaluated. 
 
The marginal mean errors of the exercise factor showed that walk was the most erroneous, while squat was 
the least erroneous (Figure 8). YOLO, MoveNet Thunder, and MoveNet Lightning showed the highest and 
lowest errors in walk and squat, respectively, whereas the other models showed relatively similar errors 
across exercises. This suggests that all models were likely well trained and appropriately designed for 
squatting movements, or that squats are inherently easier for the models to detect. The marginal mean errors 
by model and angle indicate that MeTRAbs X Large, MeTRAbs Small, and Mediapipe may be suitable for 
practical applications requiring knee and hip angle analysis, compared to the other models. Mediapipe 
followed almost the same pattern as MeTRAbs X Large and MeTRAbs Small, suggesting their predictions 
may be similar under certain conditions. 
 
Mediapipe, MeTRAbs Small, and MeTRAbs X Large showed smaller knee angle errors compared to YOLO, 
MoveNet Lightning, and MoveNet Thunder in jog and walk (Figures 9 and 10). YOLO, MoveNet Lightning, 
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and MoveNet Thunder showed difficulties detecting landmarks in ipsilateral exercises (Figures 9 and 10). 
Model size and architecture may have contributed to these issues. The MoveNet model was developed for 
mobile deployment; therefore, accuracy may not have been the top priority (TensorFlow, n.d.-a; TensorFlow, 
n.d.-b). YOLO originated as an object detector, so it may not yet be fully optimized for pose estimation. 
However, YOLO provides a platform for fine-tuning (Jocher et al., 2023), meaning that model accuracy for 
walking and jogging could be improved if task-specific datasets are used. A previous study employed a similar 
fine-tuning approach with another model and found improvements (He et al., 2015). This could be a direction 
for future research. 
 
Regarding the mean error shown in the box plots, negative and positive values indicate that the pose 
estimator overestimated and underestimated joint angle measurements relative to the reference, respectively 
(Figure 10). Both overestimation and underestimation were greater during walk and jog for YOLO, MoveNet 
Lightning, and MoveNet Thunder, suggesting that the errors may not have been systematic. 
 
The observed positive biases across all models suggest a systematic tendency for marker less pose 
estimation methods to overestimate joint angles relative to the VICON system (Figure 11). While small biases 
(approximately +4–5°) were found for MeTRAbs and MoveNet Thunder, larger deviations in YOLO and 
MoveNet Lightning highlight limitations in predictive accuracy, particularly during complex joint movements. 
The width of the limits of agreement further reflects model consistency, with narrower ranges in MeTRAbs 
models indicating greater reliability. The diamond-shaped pattern evident in the Bland–Altman plots suggests 
a non-linear error distribution, with larger errors occurring at mid-range joint angles (approximately 90–110°) 
and smaller errors at the extremes. This may indicate that models struggle when joints are moderately flexed, 
possibly due to self-occlusion, limb overlap, or underrepresentation of such poses in training data. The 
absence of constant error across all joint angles suggests that the inaccuracies reflect systematic rather than 
random bias. These findings highlight the need to consider not just average accuracy, but also variability and 
error distribution across different joint ranges. For applications requiring precise kinematic analysis—
especially during deep flexion or dynamic movements—MeTRAbs models appear to provide more stable 
performance than lightweight alternatives such as YOLO or MoveNet Lightning. 
 
Considering these results, Mediapipe, MeTRAbs Small, and MeTRAbs X Large show potential for kinematic 
analysis with acceptable accuracy. Mediapipe, in particular, is user-friendly for mobile application 
development, making it suitable for practical kinematic analysis applications. The other models may be usable 
for contralateral exercises, but they appear less reliable for ipsilateral movements. However, YOLO could be 
improved by fine-tuning using task-specific datasets. 
 
For practical use cases, each model requires further accuracy improvements, particularly YOLO. Among the 
models examined, Mediapipe appears to be the most appropriate choice for many applications due to its 
accuracy, developer-friendliness, and inference speed. Surprisingly, Mediapipe’s accuracy was similar to that 
of the MeTRAbs models, even though MeTRAbs models are computationally heavier. For detecting counter-
movement jumps, squats, and jogs, MoveNet Thunder can also be a reasonable option alongside Mediapipe. 
These movements are often analysed in performance research. For squat analysis using pose estimation, 
all models except YOLO appear usable. 
 
Finally, typical average absolute errors of approximately 9–10 degrees should be considered acceptable for 
current state-of-the-art pose estimation. When higher accuracy is required, such as in clinical gait analysis, 
pose estimation should not be recommended. Nevertheless, improvements may be anticipated in the near 
future. 
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Although this study found meaningful results, the small sample size must be acknowledged. More participants 
are needed to draw stronger conclusions. Additionally, this study analysed only hip and knee joint angles; 
therefore, the findings may not generalize to other joints, including those in the lower extremities such as the 
ankle. Future research should evaluate a wider range of joint angles. 
 
CONCLUSION 
 
This study compared six different models and variants by joint angle measurement errors against VICON 
measurements. Three-way repeated measurement ANOVA and post-hoc measurements revealed that 
Mediapipe, MeTRAbs Small, and MeTRAbs X Large outperformed YOLO, MoveNet Lightning, and MoveNet 
Thunder overall. Considering application development friendliness, Mediapipe would be a proper choice 
among the models and variants investigated in this study. However, YOLO contains the potential to improve 
accuracy by fine-tuning. Although statistical analysis resulted in some significant differences in factor and 
interaction level, post-hoc comparisons were mostly insignificant due to low power resulting from the low 
number of only 5 participants. 
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