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ABSTRACT 
 
Conventional methods of assessing body composition are accurate but may not be accessible beyond clinical settings. 
While technological advances have led to the development of more convenient alternative measures, their accuracy 
has yet to be determined. The present investigation assessed the accuracy of a smartphone-based 3D application’s 
measurements of body fat percentage in comparison to a bioelectrical impedance analyser (BIA), a well-established 
criterion measure. Sixty-nine apparently healthy, college-aged adults had their body fat percentage measured with BIA 
followed by the smartphone-based application. Spearman’s rank correlation was calculated to be 0.98 (95% CI: 0.92, 
0.99), indicating a very strong correlation between the two BF percentage measures. The bias observed between the 
two devices was low (0.2% [95% CI: -0.1, 0.5]) with limits of agreement spanning from -2.9% (95% CI: -3.4, -2.3) to 
3.2% (95% CI: 2.7, 3.8). Given the strong overall agreement between the two modalities, this smartphone-based 
application may have the potential to make accurate body fat measurements more accessible. Further validation is 
needed in more diverse populations and against other criterion measures, such as dual-energy x-ray absorptiometry 
(DXA). 
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INTRODUCTION 
 
Body composition is a valuable metric for evaluating comprehensive health and fitness, providing insight into 
acute and long-term responses to dietary modifications and physical activity (Castro et al., 2020). Standard 
assessments of body composition measure total body mass using a two-category model: fat mass (FM) and 
fat-free mass (FFM), which comprises muscle, water, organs, and bones (Holmes & Racette, 2021). Adverse 
changes in body composition, such as muscle wasting and elevated adiposity, are associated with poor 
clinical outcomes and a higher risk of mortality (Santanasto et al., 2017). Most relevant to public health at the 
global scale, however, is the development of obesity, which carries significant cardiometabolic risk and may 
lead to downstream health complications (Bray et al., 2018). 
 
Considering the importance of body composition in both clinical and fitness contexts, numerous methods are 
available for its measurement. Self-weighing with commercially available scales can provide a general, albeit 
limited, indication of overall body composition through body weight (Zheng et al., 2014). Body mass index 
(BMI) measures weight relative to height but fails to differentiate between FM and FFM. Resultantly, reliance 
on BMI measures alone can contribute to discrepancies in obesity diagnoses (Okorodudu et al., 2020). 
Alternative measures include abdominal circumference measurement, waist-to-hip ratio, and skinfold 
measurements, all of which are subject to considerable variability in execution and interpretation (Duren et 
al., 2008). Well-validated measures, such as dual-energy x-ray absorptiometry (DXA), bioelectrical 
impedance analysers (BIA), computed tomography, and magnetic resonance imaging, may offer more 
accurate assessments of body composition. However, these methods are limited by high cost, time 
consumption, the need for expert involvement, and their applicability to specific demographics. Furthermore, 
these methods may not be accessible beyond laboratories or clinics, consequently limiting their practicality 
and feasibility for home-based use. 
 
Recent technological advancements have been leveraged to facilitate digitally based anthropometric 
measurements, improving accessibility to body composition assessments. From three-dimensional imaging 
scans (Tinsley et al, 2024; Florez et al., 2024) to integrated two- and three-dimensional modelling (Neufeld 
et al., 2020), these modern alternatives have demonstrated promising results in accurately evaluating body 
composition. Overall, these app-based measurements have shown relative agreement with traditional 
methods, including DXA and BIA. However, given that these platforms are still in their nascent stages, further 
validation is necessary to ensure their accuracy. This present study assesses the accuracy and validity of 
Visualize Me (Visualize Inc., Tokyo, Japan), a smartphone-based application that uses depth mapping and 
infrared scanning for detailed body composition analysis, against criterion-BIA measurements. 
 
METHODS 
 
Participants 
A total of eighty-eight apparently healthy participants (60 male, aged 20.1 ± 1.1 yrs; BMI 23.2 ± 1.2 kg/m2) 
from the University of California, Los Angeles (UCLA) community volunteered to participate in this study. 
Sixty-nine participants were included in the final analysis (Figure 1). Written informed consent and ethical 
approval (IRB:11-003190) was obtained from all pilot participants for a priori power analysis determination at 
UCLA. Off-site participants gave written consent and approval from a single IRB (sIRB: BRANY, NY, USA) 
for all data collection. Research practices were conducted in accordance with the ethical principles 
documented in the Declaration of Helsinki. 
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Figure 1. Schematic outlining the exclusion parameters for the final data set used for analysis. Made with 
Biorender (2025). 

 
Testing procedures 
Body mass and height 
Body mass was measured on a calibrated medical scale (accuracy ±0.1 kg), and height was determined 
using a precision stadiometer (Seca, Hanover, MD, United States; accuracy ±0.01 m). In a fasted state and 
after voiding their bladder, participants were instructed to remove unnecessary clothing and accessories prior 
to being weighed, as well as remove their shoes prior to taking height measurements. 
 
Criterion measure 
A validated octipolar, multi-frequency, multi-segmental bioelectrical impedance analyser (BIA) was used as 
the criterion measure for assessing body composition (InBody Co., Seoul, Korea Republic) (Dolezal et al., 
2013). To ensure accuracy, participants adhered to standard pre-measurement BIA guidelines recommended 
by the American Society of Exercise Physiologists (Heyward, 2001). Briefly, the test was performed after at 
least 3 hours of fasting and voiding, with participants instructed to remain hydrated and not exercise 2 hours 
before testing. After investigators explained the procedure, the participant stood upright with their feet on two 
metallic footpads while holding a handgrip with both hands. The instrument measured resistance and 
reactance using proprietary algorithms. Measurements were conducted in triplicate and averaged. 
 
Mobile application 
Following the BIA measurements, body fat percentage was determined using a smartphone-based 
application ("Visualize Me", Visualize Inc., Tokyo). This application employs the True Depth camera system 
(Apple Inc., Cupertino, CA) to obtain body measurements through a combination of depth mapping and 
infrared scanning technologies (Figure 2). According to the company, a 30-second scan facilitates 
measurements of the user’s neck, chest, waist, and hip circumferences, which are subsequently processed 
through proprietary AI models to validate measurement accuracy. Body fat percentage is then calculated by 
incorporating these measurements into the circumference-based formula utilized by various arms of the 
United States military (Taylor et al., 2024). 
 
Participants began by removing any loose upper-body clothing, excluding bras and tight-fitting shirts, for the 
measurements. The smartphone equipped with the application was initially provided by the staff to the 
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participant. Once prompted, the participant entered their sex and height, then pressed the 'scan' button. 
Subsequently, the app delivered an instructional audio prompt. Two photographs were then taken: a front 
profile with the smartphone held in both hands to capture the shoulders and waist (excluding the face), and 
a side profile with the smartphone held in one hand to capture the side of the shoulder and waist. Participants 
subsequently adjusted a circle on the screen to mark the position of their belly button on the frontal image. 
To ensure impartiality, neither the staff nor the participants were permitted to access their body fat percentage 
results from this measurement or the subsequent BIA assessment. The test was conducted three consecutive 
times, with results documented by an independent, unblinded associate. 
 

 
 

Figure 2. Depiction of front view (A) and side view (B) postures for thorough body composition evaluation via 
the smartphone application. Quality assurance and precise measurement guidelines are provided during the 
assessment process (C). Triplicate measurements are averaged using proprietary software to produce an 
estimation of body fat percentage (D). 
 
Data analysis 
Group agreement between each measurement pair (i.e., smartphone application versus BIA) was determined 
through bias and limits of agreement (LoA) (Bland & Altman, 1986). The former evaluates the average 
difference between concurrent measurements across a sample, whereas the latter indicates the outer 
extremes for the potential difference between two measurements (i.e. 95% LoA) (Giavarina, 2015; Bland & 
Altman, 1999). Normality assessment was conducted using Shapiro-Wilk tests (Ghasemi & Zahediasl, 2012), 
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followed by determination of the Spearman rank correlation coefficient to identify monotonic association 
(Schober et al., 2018). The threshold for a strong correlation between two measurements corresponds to a 
correlation coefficient ≥ .90. 
 
RESULTS 
 
Of the 85 initial participants, data from 69 of these participants was used for final analysis. Shapiro-Wilk tests 
demonstrated that both distributions deviate significantly from normality. Spearman’s rank correlation 
coefficient was calculated due to non-normal distributions and calculated to be 0.98 (95% CI: 0.92, 0.99) 
(Figure 2), indicating a very strong correlation between the two BF percentage measures. The bias observed 
between the two devices, represented by a Bland-Altman plot (Figure 3), was 0.2% (95% CI: -0.1, 0.5) with 
LoA spanning from -2.9% (95% CI: -3.4, -2.3) to 3.2% (95% CI: 2.7, 3.8). These findings support a strong 
overall agreement between both modalities. 
 

 
 
Figure 3. Correlation between body fat measurements with the criterion BIA measure and the smartphone 
application. 
 

 
 
Figure 4. The Bland-Altman plot demonstrates the difference in body fat measurements between the app and 
criterion methods versus the average of the two modalities. The smaller dashed lines next to each larger 
dashed line indicate the 95% confidence interval. 
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DISCUSSION 
 
The primary objective of this study was to assess the validity of a novel smartphone application’s body fat 
(BF) measurements in comparison to a criterion BF measure (BIA). These results indicate that BF 
measurements were highly comparable between both methods. Spearman’s rank correlation exceeded the 
threshold of 0.90, demonstrating a very strong correlation in BF percentage between the Visualize Me 
smartphone application and criterion BIA. Additionally, there was negligible bias and a small error margin of 
less than 2.5% between the measurements. These findings highlight the potential of this application to 
provide accurate and accessible body composition assessments. 
 
Previous efforts have been made to simplify body composition assessment, but oversimplification may 
compromise accuracy. Frija-Masson and colleagues evaluated the accuracy of body composition 
assessments from three commercially available smart scales in comparison to DXA (Frija-Masson et al., 
2021). Despite accurate measurements of body weight, notable discrepancies were observed in regard to 
body fat and muscle mass. Body fat was underestimated across all three scales, with absolute errors of -2.2 
kg (IQR: -5.8, 1.3), -4.4 kg (IQR: -6.6, 0), and -3.7 kg (IQR: 8.0, 0.3), respectively. Similarly, variability in the 
assessment of muscle mass was characterized by absolute errors of 4.5kg (IQR: 0.4, 7.3), -6.6 kg (-9.4, -
3.6), and 4.0 kg (IQR: 0.1, 7.6), respectively. The authors posited that these inconsistencies could have been 
attributed to a variety of factors, including foot position, inadvertent leg flexion, and varied electrode contact 
due to differing foot dimensions. Ultimately, this variability suggests that accurate estimations of body 
composition may not be achievable with contemporary scales and may therefore require alternative, more 
sophisticated methods. 
 
Recent advancements in anthropometric measurements via digital platforms have demonstrated promising 
preliminary results, although absolute accuracy has yet to be achieved. For instance, mobile phone-based 
three-dimensional (3D) optical imaging has been used to measure abdominal circumference, which can be 
incorporated into a single-site BF estimation equation devised by the United States military (Florez et al., 
2024). When compared to DXA, measurements of BF percentage, fat mass (FM), and fat-free mass (FFM) 
revealed no significant discrepancies between the two methods. Nevertheless, notable proportional bias was 
detected among participants with exceptionally low or high BF percentages. Another application, which 
reconstructed 3D avatars based on smartphone camera scanning, showed a strong correlation with DXA 
measurements (r = 0.90) without proportional bias (Tinsley et al., 2024). Unlike the one-site method, this 
application utilized a range of visual data through a full 360-degree rotation of the subject. Indeed, the multiple 
angles and comprehensive visual detail captured through this method may have enhanced the assessment’s 
accuracy. While the present study’s application only captured front and side views of each participant, its 
accurate estimation of BF percentage relative to BIA suggest that this approach may still be sufficient for 
proper assessment. 
 
3D body scanning without the use of smartphone imaging has also been shown to produce reliable 
measurements, especially when compared to manual anthropometric measurements (Medina-Inojosa et al., 
2016; Pepper et al., 2010; Derouchey et al., 2020). A recent review found that numerous 3D body scanning 
modalities have demonstrated strong agreement with other criterion measures, including DXA and air 
displacement plethysmography (ADP) (Porterfield et al., 2024). For instance, the Styku S100 scanner has 
been able to produce estimations of FFM and FM with minor differences compared to DXA (1.2 ± 3.4 kg and 
1.3 ± 3.4 kg, respectively) (Bennett et al., 2022). Concordance correlation coefficients further validated the 
accuracy of FFM and FM estimations, which were calculated to be 0.97 (95% CI: 0.96-0.98) and 0.95 (95% 
CI: 0.94-0.97), respectively. Other 3D body scanning methods, such as the Size Stream SS20 3D optical 
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system (Harty et al., 2020) and the Fit 3D body scanner (Ng et al., 2019), have been used in conjunction with 
advanced prediction equations to yield body composition estimates concordant with DXA. The former 
predicted body fat percentage with an R2 value of .78, whereas the latter produced estimates of FM and 
visceral fat with R2 values of .88 and .67 in males, in addition to .93 and .75 in females, respectively. 
Altogether, these results support the efficacy of 3D body scanning to accurately assess body composition. 
 
However, two-dimensional (2D) images can still be utilized to produce accurate estimations of body 
composition. A recently developed visual body composition method, which uses 2D images captured via 
smartphone in conjunction with convolutional neural networks, was able to produce accurate and unbiased 
body fat estimates concordant with DXA (Majmudar et al., 2022). Notably, this method also outperformed 
home-based BIA modalities and ADP. Other 2D body scanning platforms have also shown the ability to 
produce accurate anthropometric measurements of the torso, waist, and both upper and lower extremities 
(Anisuzzaman et al., 2019; Foysal et al., 2021; de Souza et al., 2020). While 3D scanners have been 
validated in larger and more diverse populations, they may be less accessible than 2D scanners. Unlike 3D 
scanners that cost hundreds to thousands of dollars (Daanen et al., 2013), the majority of available 2D body 
scanners are generally inexpensive and simple to operate. 2D body scanning is typically conducted with 
smartphone technology, offering a low-cost alternative to 3D scanning and other clinic-based methods (i.e.. 
DXA). At least 85% of the United States population owns a smartphone, whether it be for personal, work-
related, and/or social media purposes (Schuster et al., 2022). Therefore, smartphone-based applications may 
be more widely accessible compared to other 3D scanning modalities. It is important to acknowledge that the 
application utilized in the present study is both smartphone-based and utilizes 3D scanning, which may 
support its accessibility and accuracy compared to alternative methods. 
 
Aside from the methodological and practical challenges of assessing BF percentage, the variable distribution 
of adipose tissue also warrants consideration. Adipose tissue primarily resides beneath the skin, known as 
subcutaneous adipose tissue (SCAT), and around internal organs, referred to as visceral adipose tissue 
(VAT) (Frank et al., 2018). While women tend to have more SCAT, concentrated mainly in the gluteofemoral 
region, men have higher levels of VAT located predominantly around their abdominal organs (Fried et al., 
2015; Link et al., 2017). These sex-related dimorphisms, however, are temporospatial. Girls typically have 
less waist fat and more peripheral hip fat than boys during prepubescence, whereas boys tend to have more 
trunk fat. Such regional differences become more pronounced over time and become particularly apparent 
during the transition between late puberty and early adulthood (Taylor et al., 2012). Age, while still important 
in both sexes, is a critical factor for women. Postmenopausal women generally lose the protective effects of 
oestrogen that mitigate weight gain, resulting in a more central accumulation of adipose tissue (Ley et al., 
1992). Consequently, the age- and sex-related differences in regional concentrations of adipose tissue 
should be considered for the proper assessment of body composition. 
 
The limitations of this study include the homogeneity of participant demographics and potential user errors 
with the application. Since the data was collected exclusively from college-aged, apparently healthy 
individuals, interpretations should be confined to this specific population. Further validation of measurement 
accuracy is required across a broader and more diverse population, including paediatric and geriatric 
subjects. To this end, additional research is necessary to compare this application’s accuracy with that of 
DXA, which is widely considered the gold standard for body composition assessments. The majority of 
previous validation studies use DXA as the criterion measure for comparison, which may also limit our 
findings in comparison to other studied modalities. Although the application provides audible measurement 
guidelines, camera angles and user errors in positioning may have led to some discrepancies in data capture. 
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CONCLUSION 
 
The application utilized in this study facilitated accurate body fat measurements relative to a criterion BF 
method (BIA). A strong correlation was observed between both modalities, along with overall agreement and 
negligible bias. This efficient, smartphone-based application has the potential to make body fat assessments 
more accessible in public health and fitness landscapes. Further research is warranted to assess the 
accuracy of this application compared to alternative methods, such as DXA, as well as in more diverse 
populations. 
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