Biomechanics of lateral movements A review
Main Article Content
Abstract
Lateral displacements are part of the so-called unusual patterns of human locomotion, a motor activity of great interest for the sciences of human performance, rehabilitation, engineering, and biomechanics. Sagittal plane displacements, abundantly studied, present mechanical and energetic differences, but also very similar muscular structures and synergies. The mechanical, energetic behavior and muscular synergies of lateral displacements in humans, on the other hand, are less well known. Studies that incorporate mechanical work, energy cost and muscular synergies simultaneously, would be of great contribution to give an integral answer to this modality of human locomotion. Given the identification of the absence, through a previous systematic review, of approaches that simultaneously incorporate these variables, this article aims to present an argumentative review of the literature, focusing on the mechanical and energetic aspects and the mechanical models of lateral displacements as part of non-habitual patterns of human locomotion. A better understanding of the determinants and mechanical models of lateral displacements is relevant to generate advances in their application in areas such as clinical rehabilitation, injury prevention, robotics, expenditure activities and performance in different sports, among others.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Acasio, Julian Mengnan/Mary WuKeith E. Gordon. (2017). Stability-maneuverability trade-offs during lateral steps. Gait and Posture. https://doi.org/10.1016/j.gaitpost.2016.11.034 DOI: https://doi.org/10.1016/j.gaitpost.2016.11.034
Adesola A. M, Azeez O.M. (2009). Comparison of Cardio-Pulmonary Responses to Forward and Backward Walking and Running. Afr. J. Biomed. Res. Vol. 12, No. 2, 95-10.
Biancardi, C.M., Bona, R. L., & Lagos Hausheer, L. (2020). Human locomotion: models and biomechanical variables. Pensar en Movimiento: Revista de ciencias del ejercicio y la salud, 18(2), 168-198. https://doi.org/10.15517/pensarmov.v18i2.41360 DOI: https://doi.org/10.15517/pensarmov.v18i2.41360
Blickhan, R. (1989). The spring-mass model for running and hopping. Journal of Biomechanics, 22(11-12), 1217-1227. https://doi.org/10.1016/0021-9290(89)90224-8 DOI: https://doi.org/10.1016/0021-9290(89)90224-8
Bloem BR, Steijns JA, and Smits-Engelsman BC. (2003). "An update on falls," Curr Opin Neurol, vol.16, no. 1, pp. 15-26. https://doi.org/10.1097/00019052-200302000-00003 DOI: https://doi.org/10.1097/00019052-200302000-00003
Bloomfield J, Polman R, O'Donoghue P. (2007). Physical demands of different positions in FA Premier League Football. J Sports Sci Med;6(1):63-70.
Bona, R. L., Bonezi, A., da Silva, P. F., Biancardi, C. M., de Souza Castro, F. A., and Clausel, N. O. (2017). Effect of walking speed in heart failure patients and heart transplant patients. Clinical Biomechanics, 42, 85-91. https://doi.org/10.1016/j.clinbiomech.2017.01.008 DOI: https://doi.org/10.1016/j.clinbiomech.2017.01.008
Bona, R. L., Gomeñuka, N. A., Storniolo, J. L. L. L., Bonezi, A., & Biancardi, C. M. (2019). Self- selected walking speed in individuals with transfemoral amputation: recovery, economy, and rehabilitation index. European Journal of Physiotherapy, 22(3), 133-140. https://doi.org/10.1080/21679169.2018.1561941 DOI: https://doi.org/10.1080/21679169.2018.1561941
Brach JS, Studenski SA, Perera S, VanSwearingen JM, and Newman AB (2007). "Gait variability and the risk of incident mobility disability in community-dwelling older adults," J Gerontol A Biol Sci Med Sci, vol. 62, no. 9, pp. 983-8. https://doi.org/10.1093/gerona/62.9.983 DOI: https://doi.org/10.1093/gerona/62.9.983
Burnett D. R., Campbell-Kyureghyan, N. H., Cerrito, P. B., & P. M. Quesada. (2011). Symmetry of ground reaction forces and muscle activity in asymptomatic subjects during walking, sit-to-stand, and stand-to-sit tasks, Journal of Electromyography and Kinesiology. 21(4) 610-615. https://doi.org/10.1016/j.jelekin.2011.03.006 DOI: https://doi.org/10.1016/j.jelekin.2011.03.006
Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, and Heidel J. (2003). "Nonlinear dynamics indicates aging affects variability during gait," Clinical Biomechanics, vol. 18, no. 5, pp. 435-443. https://doi.org/10.1016/S0268-0033(03)00029-9 DOI: https://doi.org/10.1016/S0268-0033(03)00029-9
Cappellini, G., Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2006). Motor Patterns in Human Walking and Running. Journal of Neurophysiology, 95(6), 3426–3437. https://doi.org/10.1152/jn.00081.2006 Cavagna, G. A., Thys, H., & Zamboni, A. (1976). The sources of external work in level walking and running. The Journal of Physiology, 262(3), 639-657. https://doi.org/10.1113/jphysiol.1976.sp011613 DOI: https://doi.org/10.1152/jn.00081.2006
Carr J, Shepherd R. (2010). Neurological rehabilitation: optimizing motor performance, ed 2. London, UK, Churchill Livingstone, pp. 120-44.
Cavagna, G. A., Saibene, F., & Margaria, R. (1963). External work in walking. Journal of Applied Physiology, 18(1), 1-9. https://doi.org/10.1152/jappl.1963.18.1.1 DOI: https://doi.org/10.1152/jappl.1963.18.1.1
Chang-Yong Kim, PhD, PT, Jung-Sun Lee, BHSc, OT, and Hyeong-Dong Kim, PhD. (2017). RPT Comparison of the Effect of Lateral and Backward Walking Training on Walking Function in Patients with Poststroke Hemiplegia A Pilot Randomized Controlled Trial. CME article 2017 series number 2. https://doi.org/10.1097/PHM.0000000000000541 DOI: https://doi.org/10.1097/PHM.0000000000000541
Chien-Ju Lin, Lin-Hwa Wang, Fong-Chin Su. Gait Analysis of Slope Lateral Walking: A Preliminary Study. Journal of Medical and Biological Engineering, 24(4): 189-194.
Daneshjoo Abdolhamid, Nader Rahnama, Abdul Halim Mokhtar, Ashril Yusof. Effectiveness of Injury Prevention Programs on Developing Quadriceps and Hamstrings Strength of Young Male Professional Soccer Players. Journal of Human Kinetics volume 39/2013, 115-125 https://doi.org/10.2478/hukin-2013-0074 DOI: https://doi.org/10.2478/hukin-2013-0074
Dean, J.C., Kautz, S.A. (2015). Foot placement control and gait instability among people with stroke, J. Rehabil. Res. Dev. 52 577-590. https://doi.org/10.1682/JRRD.2014.09.0207 DOI: https://doi.org/10.1682/JRRD.2014.09.0207
Desmurget M, Grafton S. (2000). Forward modeling enables feedback control for fast reaching movements. Trends Cogn Sci;4:423-31. https://doi.org/10.1016/S1364-6613(00)01537-0 DOI: https://doi.org/10.1016/S1364-6613(00)01537-0
Dickinson, M.H., Farley, Full, C.T., Koehl, R.J. Kram M.A. R. (2000). Lehman, S. How animals move: an integrative view, Science 288, 100-106. https://doi.org/10.1126/science.288.5463.100 DOI: https://doi.org/10.1126/science.288.5463.100
Eng JJ, Winter DA. (1995). Kinetic analysis of the lower limbs during gait: what information can be obtained from a three-dimensional model? J Biomechanics;28:753-8. https://doi.org/10.1016/0021-9290(94)00124-M DOI: https://doi.org/10.1016/0021-9290(94)00124-M
Falconer, J. A., Naughton, B. J., Dunlop, D. D., Roth, E. J., Strasser, D. C., & Sinacore, J. M. (1994). Predicting stroke inpatient rehabilitation outcome using a classification tree approach. Archives of Physical Medicine and Rehabilitation, 75(6), 619–625. https://doi.org/10.1016/0003-9993(94)90182-1 DOI: https://doi.org/10.1016/0003-9993(94)90182-1
Fusco A., Iosa M., Gallotta M. C., Paolucci S., Baldari C., & Guidetti L. (2014). Different performances in static and dynamic imagery and real locomotion. An exploratory trial, Frontiers in human neuro science. 8, 760. https://doi.org/10.3389/fnhum.2014.00760 DOI: https://doi.org/10.3389/fnhum.2014.00760
Friedman PJ. (1990). Gait recovery after hemiplegic stroke. International Disabling Stud;12:119-22. https://doi.org/10.3109/03790799009166265 DOI: https://doi.org/10.3109/03790799009166265
Gilchrist LA. (1998). Age-related changes in side-stepping ability during gait. clin Biomechanics;13(2):91-7. https://doi.org/10.1016/S0268-0033(97)00086-7 DOI: https://doi.org/10.1016/S0268-0033(97)00086-7
Glaister, B.C., Bernatz, G.C. Klute, G.K., Orendurff, M.S. (2007). Video task analysis of turning during activities of daily living, Gait Posture 25, 289-294. https://doi.org/10.1016/j.gaitpost.2006.04.003 DOI: https://doi.org/10.1016/j.gaitpost.2006.04.003
Grasso R, Bianchi L, Lacquaniti F. (1998). Motor patterns for human gait: backward versus forward locomotion. J Neurophysiol;80:1868-85. https://doi.org/10.1152/jn.1998.80.4.1868 DOI: https://doi.org/10.1152/jn.1998.80.4.1868
Hak, L., Houdijk, H., Steenbrink, F., Mert, A., van der Wurff, P., Beek, P. J., & van Dieën, J. H. (2013). Stepping strategies for regulating gait adaptability and stability. Journal of Biomechanics, 46(5), 905–911. https://doi.org/https://doi.org/10.1016/j.jbiomech.2012.12.017 DOI: https://doi.org/10.1016/j.jbiomech.2012.12.017
Hausdorff JM, Rios DA, and Edelberg HK. (2001). "Gait variability and fall risk in community-living older adults: a 1-year prospective study," Arch Phys Med Rehabil, vol. 82, no. 8, pp. 1050-6. https://doi.org/10.1053/apmr.2001.24893 DOI: https://doi.org/10.1053/apmr.2001.24893
Iosa, M., De Bartolo, D., Morone, G., Boffi, T., Mammucari, E., Vannozzi, G., Bini, F., Marinozzi, F., Antonucci, G., & Paolucci, S. (2019). Gait phase proportions in different locomotion tasks: The pivot role of golden ratio. Neuroscience Letters, 699, 127–133. https://doi.org/https://doi.org/10.1016/j.neulet.2019.01.052 DOI: https://doi.org/10.1016/j.neulet.2019.01.052
Jana Fleischmann , Dominic Gehring, Guillaume Mornieux, Albert Gollhofer. (2011). Task-specific initial impact phase adjustments in lateral jumps and lateral landings. Eur J Appl Physiol. 111:2327-2337. https://doi.org/10.1007/s00421-011-1861-z DOI: https://doi.org/10.1007/s00421-011-1861-z
Kuntze G, Sellers WI, Mansfield NJ. (2009). Bilateral ground reaction forces and joint moments for lateral sidestepping and crossover stepping tasks. J Sports Sci Med;8(1):1-8.
Lipsitz LA, and Goldberger AL. (1992). "Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence," JAMA, vol. 267, no. 13, pp. 1806-9. https://doi.org/10.1001/jama.267.13.1806 DOI: https://doi.org/10.1001/jama.267.13.1806
Lyon, I.N., Day, B.L. Control of frontal plane body motion in human stepping, Exp. Brain Res. 115 (1997) 345-356. https://doi.org/10.1007/PL00005703 DOI: https://doi.org/10.1007/PL00005703
Liu, M. Q., Anderson, F. C., Pandy, M. G., & Delp, S. L. (2006). Muscles that support the body also modulate forward progression during walking. Journal of Biomechanics, 39(14), 2623–2630. https://doi.org/https://doi.org/10.1016/j.jbiomech.2005.08.017 DOI: https://doi.org/10.1016/j.jbiomech.2005.08.017
Margaria, R. (1976). Biomechanics and energetics of muscular exercise. Oxford: Oxford University Press, USA.
Margaria, R., Cerretelli, P., Aghemo, P., and Sassi, G. (1963). Energy cost of running. Journal of Applied Physiology, 18(2), 367-370. https://doi.org/10.1152/jappl.1963.18.2.367 DOI: https://doi.org/10.1152/jappl.1963.18.2.367
McMahon, T. A., and Cheng, G. C. (1990). The mechanics of running: How does stiffness couple with speed? Journal of Biomechanics, 23(Suppl. 1), 65-78. https://doi.org/10.1016/0021-9290(90)90042-2 DOI: https://doi.org/10.1016/0021-9290(90)90042-2
Mian, O. S., Thom, J. M., Ardigò, L. P., Narici, M. V., and Minetti, A. E. (2006). Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica, 186(2), 127-139. https://doi.org/10.1111/j.1748-1716.2006.01522.x DOI: https://doi.org/10.1111/j.1748-1716.2006.01522.x
Minetti, A. E. (1998). The biomechanics of skipping gaits: A third locomotion paradigm?. Proceedings of the Royal Society B: Biological Sciences, 265(1402), 1227-1235. https://doi.org/10.1098/rspb.1998.0424 DOI: https://doi.org/10.1098/rspb.1998.0424
Minetti, A. E., & Pavei, G. (2018). Update and extension of the "equivalent slope" of speed- changing level locomotion in humans: A computational model for shuttle running. Journal of Experimental Biology, 221(15). https://doi.org/10.1242/jeb.182303 DOI: https://doi.org/10.1242/jeb.182303
Minetti, A. E., Pavei, G., & Biancardi, C. M. (2012). The energetics and mechanics of level and gradient skipping: Preliminary results for a potential gait of choice in low gravity environments. Planetary and Space Science, 74(1), 142-145. https://doi.org/10.1016/j.pss.2012.06.004 DOI: https://doi.org/10.1016/j.pss.2012.06.004
Montoye, H. J., Ayen, T., Nagle, F., & Howley, E. T. (1985). The Oxygen required for horizontal and grade walking on a motor-driven treadmill. Medicine & Science in Sports & Exercise, 17(6). https://doi.org/10.1249/00005768-198512000-00003 DOI: https://doi.org/10.1249/00005768-198512000-00003
O'Connor SM, and Kuo AD. (2009). "Direction-dependent control of balance during walking and standing," J Neurophysiol, vol. 102, no. 3, pp. 1411-9. https://doi.org/10.1152/jn.00131.2009 DOI: https://doi.org/10.1152/jn.00131.2009
Paquette, M.R., Fuller, J.R., Adkin, A.L.,Vallis, L.A. (2008). Age-related modifications in steering behaviour: effects of base-of-support constraints at the turn point, Exp. Brain Res. 190 (2008) 1-9. https://doi.org/10.1007/s00221-008-1448-z DOI: https://doi.org/10.1007/s00221-008-1448-z
Pequera, G.; Paulino I. R.; Biancardi, C. M. (2021). Common motor patterns of asymmetrical and symmetrical bipedal gaits. PeerJ, 9, e11970. https://doi.org/10.7717/peerj.11970 DOI: https://doi.org/10.7717/peerj.11970
Pequera, G., Yelós, V., & Biancardi, C. M. (2023). Reducing cost of transport in asymmetrical gaits: lessons from unilateral skipping. European Journal of Applied Physiology, 123(3), 623-631. https://doi.org/10.1007/s00421-022-05088-x DOI: https://doi.org/10.1007/s00421-022-05088-x
Patla, A.E., Prentice, S.D., Robinson, C., Neufeld, J. (1991). Visual control of locomotion: strategies for changing direction and for going over obstacles, J. Exp. Psychol. Psychol. Percept. Perform. 17, 603-634. https://doi.org/10.1037/0096-1523.17.3.603 DOI: https://doi.org/10.1037//0096-1523.17.3.603
Pavei, G., Biancardi, C. M., & Minetti, A. E. (2015). Skipping vs. running as the bipedal gait of choice in hypogravity. Journal of Applied Physiology, 119(1). https://doi.org/10.1152/japplphysiol.01021.2014 DOI: https://doi.org/10.1152/japplphysiol.01021.2014
Rankin, B.L., Buffo, S.K., Dean, J.C. (2014). A neuromechanical strategy for mediolateral foot placement in walking humans, J. Neurophysiol. 112, 374-383. https://doi.org/10.1152/jn.00138.2014 DOI: https://doi.org/10.1152/jn.00138.2014
Ryu KH: The effect of walking and jogging forwards, backwards and laterally on the change in energy expenditure and cardiovascular function [master's thesis]. Seoul, Republic of Korea, Konkuk University, 2002.
Saibene, F., and Minetti, A. E. (2003). Biomechanical and physiological aspects of legged locomotion in humans. European Journal of Applied Physiology, 88, 297-316. https://doi.org/10.1007/s00421-002-0654-9 DOI: https://doi.org/10.1007/s00421-002-0654-9
Schmidt-Nielsen, K. (1972). Locomotion: energy cost of swimming, flying, and running. Science 177(4045): 222-228. https://doi.org/10.1126/science.177.4045.222 DOI: https://doi.org/10.1126/science.177.4045.222
Schmitz TJ: Preambulation and gait training, in O'Sullivan SB, Schmitz TJ (eds): Physical rehabilitation: assessment and treatment, fourth edition. Philadelphia, PA, FA Davis Company, 2001, pp. 411-43.
Soangra Rahul, Lockhart Thurmon E. effects of lateral stepping gait and dual tasking during treadmill walking in healthy young and older adults Affiliations expand. PMID: 32214529 PMCID: PMC7094810.
Terblanche E, Cloete WA, du Plessis PAL, Sadie JN, Strauss A, Unger M. (2003). The metabolic transition speed between backward walking and running. European J Appl Physiol; 90(5-6):520-5. https://doi.org/10.1007/s00421-003-0890-7 DOI: https://doi.org/10.1007/s00421-003-0890-7
Usherwood JR. (2005). Why not walk faster? Biol Lett;1(3):338-41. https://doi.org/10.1098/rsbl.2005.0312 DOI: https://doi.org/10.1098/rsbl.2005.0312
Verghese J, Buschke H, Viola L, Katz M, Hall C, Kuslansky G, and Lipton R. (2002). "Validity of divided attention tasks in predicting falls in older individuals: a preliminary study," J Am Geriatr Soc, vol. 50, no. 9, pp. 1572-6. https://doi.org/10.1046/j.1532-5415.2002.50415.x DOI: https://doi.org/10.1046/j.1532-5415.2002.50415.x
Vallis,L.A., McFadyen,B.J. (2003) Locomotor adjustments for circumvention of an obstacle in the travel path, Exp. Brain Res. 152, 409-414. https://doi.org/10.1007/s00221-003-1558-6 DOI: https://doi.org/10.1007/s00221-003-1558-6
Williford, H. N., Olson, M. S., Gauger, S., Duey, W. J., & Blessing, D. L. (1998). Cardiovascular and metabolic costs of forward, backward, and lateral motion. Medicine & Science in Sports & Exercise, 30(9). https://doi.org/10.1097/00005768-199809000-00011 DOI: https://doi.org/10.1097/00005768-199809000-00011
Wu, M., Matsubara, J.H., Gordon, K.E. (2015). General and specific strategies used to facilitate locomotor maneuvers, PLoS One 10. https://doi.org/10.1371/journal.pone.0132707 DOI: https://doi.org/10.1371/journal.pone.0132707
Yamachita Daichi 0 , Masahiro Shinya, Keisuke Fujii, Shingo Oda, Motoki Kouzaki. (2013). Walk-, run- and gallop-like gait patterns in human sideways locomotion, Journal of Electromyography and Kinesiology 23 1480-1484. https://doi.org/10.1016/j.jelekin.2013.08.005 DOI: https://doi.org/10.1016/j.jelekin.2013.08.005
Yang, Y.-R., Yen, J.-G., Wang, R.-Y., Yen, L.-L., & Lieu, F.-K. (2005). Gait outcomes after additional backward walking training in patients with stroke: a randomized controlled trial. Clinical Rehabilitation, 19(3), 264–273. https://doi.org/10.1191/0269215505cr860oa DOI: https://doi.org/10.1191/0269215505cr860oa