The effects of a single or multi-step drop-set training compared to traditional resistance training on muscle performance and body composition

Main Article Content

Moein Fasihiyan
https://orcid.org/0000-0003-4479-0393
Scott Forbes
https://orcid.org/0000-0001-6896-5552
Maryam Taheri
https://orcid.org/0000-0002-4455-4529
Jose Gomez Lopez
https://orcid.org/0009-0005-9030-3375
Mohammad Babaie
https://orcid.org/0009-0001-1531-4091
Baktash Dejam
https://orcid.org/0009-0009-0540-7145
Maryam Nourshahi
https://orcid.org/0000-0002-5064-8599

Abstract

The purpose was to examine two drop-set (DS) protocols (single step vs. multi-step) compared to traditional resistance training (TRT) over 8 weeks on changes in muscular strength, endurance and body composition. Twenty-seven trained males were randomized to one of three groups: traditional resistance training (TRT: n = 9), the single step drop set group (DS-S: n = 10) and the multi-step drop set group (DS-M: n = 8). Before and after training, body composition (percent body fat and skeletal muscle mass), and muscular strength and endurance (bench and leg press) were determined. Results: There was a significant interaction for leg press 1-RM (p < .001) and absolute change for leg-press 1-RM was significantly greater for both drop set protocols compared to TRT (p < .001). There were significant interactions for both leg press and bench press endurance (p < .001), with post hoc analyses revealing that only DS-M was superior to TRT (p < .001). There was a significant main effect of time for % body fat (p = .020), SMM (p < .001), however there were no differences between groups. Conclusions: Overall, single-step and multi-step drop-set training to failure appear to be effective strategies to enhance lower body strength, while only the multi-step drop set training enhanced muscular endurance compared to TRT.

Article Details

How to Cite
Fasihiyan, M., Forbes , S., Taheri, M., Lopez , J. G., Babaie, M., Dejam, B., & Nourshahi, M. (2023). The effects of a single or multi-step drop-set training compared to traditional resistance training on muscle performance and body composition. Scientific Journal of Sport and Performance, 2(3), 410–422. https://doi.org/10.55860/ZMKL1980
Section
Performance Analysis of Sport and Physical Conditioning
Author Biographies

Moein Fasihiyan, Shahid Beheshti University

Department of Biological Sciences in Sport and Health. Faculty of Sport Sciences and Health.

Scott Forbes , Brandon University

Department of Physical Education Studies. Faculty of Education.

Maryam Taheri, Shahid Beheshti University

Department of Biological Sciences in Sport and Health.

Jose Gomez Lopez , Motion Training, Rehab & Nutrition Center

Human Performance Laboratory.

Mohammad Babaie, Shahid Beheshti University

Department of Biological Sciences in Sport and Health.

Baktash Dejam, Shahid Beheshti University

Department of Biological Sciences in Sport and Health.

Maryam Nourshahi, Shahid Beheshti University

Department of Biological Sciences in Sport and Health.

References

Angleri, V., Ugrinowitsch, C., & Libardi, C. A. (2017). Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men. European journal of applied physiology, 117, 359-369. https://doi.org/10.1007/s00421-016-3529-1 DOI: https://doi.org/10.1007/s00421-016-3529-1

Antonio, J., Kenyon, M., Ellerbroek, A., Carson, C., Burgess, V., Tyler-Palmer, D., ... & Peacock, C. (2019). Comparison of dual-energy X-ray absorptiometry (DXA) versus a multi-frequency bioelectrical impedance (InBody 770) device for body composition assessment after a 4-week hypoenergetic diet. Journal of functional morphology and kinesiology, 4(2), 23. https://doi.org/10.3390/jfmk4020023 DOI: https://doi.org/10.3390/jfmk4020023

Boidin, A., Tam, R., Mitchell, L., Cox, G. R., & O'Connor, H. (2021). The effectiveness of nutrition education programmes on improving dietary intake in athletes: a systematic review. British Journal of Nutrition, 125(12), 1359-1373. https://doi.org/10.1017/s0007114520003694 DOI: https://doi.org/10.1017/S0007114520003694

Brown, L. E., & Weir, J. P. (2001). ASEP procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology Online, 4(3).

Coleman, M., Harrison, K., Arias, R., Johnson, E., Grgic, J., Orazem, J., & Schoenfeld, B. (2022). Muscular Adaptations in Drop Set vs. Traditional Training: A meta-analysis. International Journal of Strength and Conditioning, 2(1). https://doi.org/10.47206/ijsc.v2i1.135 DOI: https://doi.org/10.47206/ijsc.v2i1.135

Enes, A., Alves, R. C., Schoenfeld, B. J., Oneda, G., Perin, S. C., Trindade, T. B., ... & Souza-Junior, T. P. (2021). Rest-pause and drop-set training elicit similar strength and hypertrophy adaptations compared with traditional sets in resistance-trained males. Applied Physiology, Nutrition, and Metabolism, 46(11), 1417-1424. https://doi.org/10.1139/apnm-2021-0278 DOI: https://doi.org/10.1139/apnm-2021-0278

Fink, J., Schoenfeld, B. J., Kikuchi, N., & Nakazato, K. (2018). Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. J Sports Med Phys Fitness, 58(5), 597-605. https://doi.org/10.23736/s0022-4707.17.06838-4 DOI: https://doi.org/10.23736/S0022-4707.17.06838-4

Giessing, J., Eichmann, B., Steele, J., & Fisher, J. (2016). A comparison of low volume 'high-intensity-training'and high volume traditional resistance training methods on muscular performance, body composition, and subjective assessments of training. Biology of Sport, 33(3), 241-249. https://doi.org/10.5604/20831862.1201813 DOI: https://doi.org/10.5604/20831862.1201813

Gligoroska, J. P., Manchevska, S., Petrovska, S., & Dejanova, B. (2022). Physiological mechanisms of muscle hypertrophy. Research in Physical Education, Sport & Health, 11(1). http://dx.doi.org/10.46733/PESH22111153pg DOI: https://doi.org/10.46733/PESH22111153pg

Helms, E. R., Byrnes, R. K., Cooke, D. M., Haischer, M. H., Carzoli, J. P., Johnson, T. K., ... & Zourdos, M. C. (2018). RPE vs. percentage 1RM loading in periodized programs matched for sets and repetitions. Frontiers in physiology, 247. https://doi.org/10.3389/fphys.2018.00247 DOI: https://doi.org/10.3389/fphys.2018.00247

Jiménez-Alonso, A., García-Ramos, A., Cepero, M., Miras-Moreno, S., Rojas, F. J., & Pérez-Castilla, A. (2022). Velocity performance feedback during the free-weight bench press testing procedure: an effective strategy to increase the reliability and one repetition maximum accuracy prediction. Journal of Strength and Conditioning Research, 36(4), 1077-1083. https://doi.org/10.1519/jsc.0000000000003609 DOI: https://doi.org/10.1519/JSC.0000000000003609

Juan-Recio, C., López-Plaza, D., Barbado Murillo, D., García-Vaquero, M. P., & Vera-García, F. J. (2018). Reliability assessment and correlation analysis of 3 protocols to measure trunk muscle strength and endurance. Journal of sports sciences, 36(4), 357-364. https://doi.org/10.1080/02640414.2017.1307439 DOI: https://doi.org/10.1080/02640414.2017.1307439

Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Medicine & science in sports & exercise, 36(4), 674-688. https://doi.org/10.1249/01.mss.0000121945.36635.61 DOI: https://doi.org/10.1249/01.MSS.0000121945.36635.61

Krzysztofik, M., Wilk, M., Wojdała, G., & Gołaś, A. (2019). Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. International journal of environmental research and public health, 16(24), 4897. https://doi.org/10.3390/ijerph16244897 DOI: https://doi.org/10.3390/ijerph16244897

Lasevicius, T., Schoenfeld, B. J., Silva-Batista, C., Barros, T. D. S., Aihara, A. Y., Brendon, H., ... & Teixeira, E. L. (2022). Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. Journal of strength and conditioning research, 36(2), 346-351. https://doi.org/10.1519/jsc.0000000000003454 DOI: https://doi.org/10.1519/JSC.0000000000003454

Lawson, D., Vann, C., Schoenfeld, B. J., & Haun, C. (2022). Beyond Mechanical Tension: A Review of Resistance Exercise-Induced Lactate Responses & Muscle Hypertrophy. Journal of Functional Morphology and Kinesiology, 7(4), 81. https://doi.org/10.3390/jfmk7040081 DOI: https://doi.org/10.3390/jfmk7040081

Nuzzo, J. L., Pinto, M. D., & Nosaka, K. (2023). Muscle fatigue during maximal eccentric‐only, concentric‐only, and eccentric‐concentric bicep curl exercise with automated drop setting. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14330 DOI: https://doi.org/10.1111/sms.14330

Ozaki, H., Kubota, A., Natsume, T., Loenneke, J. P., Abe, T., Machida, S., & Naito, H. (2018). Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study. Journal of sports sciences, 36(6), 691-696. https://doi.org/10.1080/02640414.2017.1331042 DOI: https://doi.org/10.1080/02640414.2017.1331042

Ozaki, H., Loenneke, J. P., Buckner, S. L., & Abe, T. (2016). Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Medical hypotheses, 88, 22-26. https://doi.org/10.1016/j.mehy.2015.12.026 DOI: https://doi.org/10.1016/j.mehy.2015.12.026

Pallarés, J. G., Hernández‐Belmonte, A., Martínez‐Cava, A., Vetrovsky, T., Steffl, M., & Courel‐Ibáñez, J. (2021). Effects of range of motion on resistance training adaptations: A systematic review and meta‐analysis. Scandinavian journal of medicine & science in sports, 31(10), 1866-1881. https://doi.org/10.1111/sms.14006 DOI: https://doi.org/10.1111/sms.14006

Prestes, J., Tibana, R. A., de Araujo Sousa, E., da Cunha Nascimento, D., de Oliveira Rocha, P., Camarço, N. F., ... & Willardson, J. M. (2019). Strength and muscular adaptations after 6 weeks of rest-pause vs. traditional multiple-sets resistance training in trained subjects. The Journal of Strength & Conditioning Research, 33, S113-S121. https://doi.org/10.1519/jsc.0000000000001923 DOI: https://doi.org/10.1519/JSC.0000000000001923

Ribeiro, A. S., Romanzini, M., Schoenfeld, B. J., Souza, M. F., Avelar, A., & Cyrino, E. S. (2014). Effect of different warm-up procedures on the performance of resistance training exercises. Perceptual and motor skills, 119(1), 133-145. https://doi.org/10.2466/25.29.pms.119c17z7 DOI: https://doi.org/10.2466/25.29.PMS.119c17z7

Saric, J., Lisica, D., Orlic, I., Grgic, J., Krieger, J. W., Vuk, S., & Schoenfeld, B. J. (2019). Resistance training frequencies of 3 and 6 times per week produce similar muscular adaptations in resistance-trained men. The Journal of Strength & Conditioning Research, 33, S122-S129. https://doi.org/10.1519/jsc.0000000000002909 DOI: https://doi.org/10.1519/JSC.0000000000002909

Schoenfeld, B., Fisher, J., Grgic, J., Haun, C., Helms, E., Phillips, S., ... & Vigotsky, A. (2021). Resistance training recommendations to maximize muscle hypertrophy in an athletic population: Position stand of the IUSCA. International Journal of Strength and Conditioning, 1(1). https://doi.org/10.47206/ijsc.v1i1.81 DOI: https://doi.org/10.47206/ijsc.v1i1.81

Schoenfeld, B. J., Contreras, B., Krieger, J., Grgic, J., Delcastillo, K., Belliard, R., & Alto, A. (2019). Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and science in sports and exercise, 51(1), 94. https://doi.org/10.1249/mss.0000000000001764 DOI: https://doi.org/10.1249/MSS.0000000000001764

Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading recommendations for muscle strength, hypertrophy, and local endurance: a re-examination of the repetition continuum. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032 DOI: https://doi.org/10.3390/sports9020032

Schoenfeld, B. J. (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports medicine, 43, 179-194. https://doi.org/10.1007/s40279-013-0017-1 DOI: https://doi.org/10.1007/s40279-013-0017-1

Seynnes, O. R., de Boer, M., & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of applied physiology, 102(1), 368-373. https://doi.org/10.1152/japplphysiol.00789.2006 DOI: https://doi.org/10.1152/japplphysiol.00789.2006

Varović, D., Žganjer, K., Vuk, S., & Schoenfeld, B. J. (2021). Drop-Set training elicits differential increases in non-uniform hypertrophy of the quadriceps in leg extension exercise. Sports, 9(9), 119. https://doi.org/10.3390/sports9090119 DOI: https://doi.org/10.3390/sports9090119

Van Tittelboom, V., Alemdaroglu-Gürbüz, I., Hanssen, B., Heyrman, L., Feys, H., Desloovere, K., ... & Van den Broeck, C. (2022). Reliability of isokinetic strength assessments of knee and hip using the Biodex System 4 dynamometer and associations with functional strength in healthy children. Frontiers in Sports and Active Living, 4, 6. https://doi.org/10.3389/fspor.2022.817216 DOI: https://doi.org/10.3389/fspor.2022.817216

Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. Journal of applied physiology. https://doi.org/10.1152/japplphysiol.00685.2018 DOI: https://doi.org/10.1152/japplphysiol.00685.2018

Wilk, M., Zajac, A., & Tufano, J. J. (2021). The influence of movement tempo during resistance training on muscular strength and hypertrophy responses: a review. Sports medicine, 51(8), 1629-1650. https://doi.org/10.1007/s40279-021-01465-2 DOI: https://doi.org/10.1007/s40279-021-01465-2