The effects of a single or multi-step drop-set training compared to traditional resistance training on muscle performance and body composition
Main Article Content
Abstract
The purpose was to examine two drop-set (DS) protocols (single step vs. multi-step) compared to traditional resistance training (TRT) over 8 weeks on changes in muscular strength, endurance and body composition. Twenty-seven trained males were randomized to one of three groups: traditional resistance training (TRT: n = 9), the single step drop set group (DS-S: n = 10) and the multi-step drop set group (DS-M: n = 8). Before and after training, body composition (percent body fat and skeletal muscle mass), and muscular strength and endurance (bench and leg press) were determined. Results: There was a significant interaction for leg press 1-RM (p < .001) and absolute change for leg-press 1-RM was significantly greater for both drop set protocols compared to TRT (p < .001). There were significant interactions for both leg press and bench press endurance (p < .001), with post hoc analyses revealing that only DS-M was superior to TRT (p < .001). There was a significant main effect of time for % body fat (p = .020), SMM (p < .001), however there were no differences between groups. Conclusions: Overall, single-step and multi-step drop-set training to failure appear to be effective strategies to enhance lower body strength, while only the multi-step drop set training enhanced muscular endurance compared to TRT.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Angleri, V., Ugrinowitsch, C., & Libardi, C. A. (2017). Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men. European journal of applied physiology, 117, 359-369. https://doi.org/10.1007/s00421-016-3529-1 DOI: https://doi.org/10.1007/s00421-016-3529-1
Antonio, J., Kenyon, M., Ellerbroek, A., Carson, C., Burgess, V., Tyler-Palmer, D., ... & Peacock, C. (2019). Comparison of dual-energy X-ray absorptiometry (DXA) versus a multi-frequency bioelectrical impedance (InBody 770) device for body composition assessment after a 4-week hypoenergetic diet. Journal of functional morphology and kinesiology, 4(2), 23. https://doi.org/10.3390/jfmk4020023 DOI: https://doi.org/10.3390/jfmk4020023
Boidin, A., Tam, R., Mitchell, L., Cox, G. R., & O'Connor, H. (2021). The effectiveness of nutrition education programmes on improving dietary intake in athletes: a systematic review. British Journal of Nutrition, 125(12), 1359-1373. https://doi.org/10.1017/s0007114520003694 DOI: https://doi.org/10.1017/S0007114520003694
Brown, L. E., & Weir, J. P. (2001). ASEP procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology Online, 4(3).
Coleman, M., Harrison, K., Arias, R., Johnson, E., Grgic, J., Orazem, J., & Schoenfeld, B. (2022). Muscular Adaptations in Drop Set vs. Traditional Training: A meta-analysis. International Journal of Strength and Conditioning, 2(1). https://doi.org/10.47206/ijsc.v2i1.135 DOI: https://doi.org/10.47206/ijsc.v2i1.135
Enes, A., Alves, R. C., Schoenfeld, B. J., Oneda, G., Perin, S. C., Trindade, T. B., ... & Souza-Junior, T. P. (2021). Rest-pause and drop-set training elicit similar strength and hypertrophy adaptations compared with traditional sets in resistance-trained males. Applied Physiology, Nutrition, and Metabolism, 46(11), 1417-1424. https://doi.org/10.1139/apnm-2021-0278 DOI: https://doi.org/10.1139/apnm-2021-0278
Fink, J., Schoenfeld, B. J., Kikuchi, N., & Nakazato, K. (2018). Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. J Sports Med Phys Fitness, 58(5), 597-605. https://doi.org/10.23736/s0022-4707.17.06838-4 DOI: https://doi.org/10.23736/S0022-4707.17.06838-4
Giessing, J., Eichmann, B., Steele, J., & Fisher, J. (2016). A comparison of low volume 'high-intensity-training'and high volume traditional resistance training methods on muscular performance, body composition, and subjective assessments of training. Biology of Sport, 33(3), 241-249. https://doi.org/10.5604/20831862.1201813 DOI: https://doi.org/10.5604/20831862.1201813
Gligoroska, J. P., Manchevska, S., Petrovska, S., & Dejanova, B. (2022). Physiological mechanisms of muscle hypertrophy. Research in Physical Education, Sport & Health, 11(1). http://dx.doi.org/10.46733/PESH22111153pg DOI: https://doi.org/10.46733/PESH22111153pg
Helms, E. R., Byrnes, R. K., Cooke, D. M., Haischer, M. H., Carzoli, J. P., Johnson, T. K., ... & Zourdos, M. C. (2018). RPE vs. percentage 1RM loading in periodized programs matched for sets and repetitions. Frontiers in physiology, 247. https://doi.org/10.3389/fphys.2018.00247 DOI: https://doi.org/10.3389/fphys.2018.00247
Jiménez-Alonso, A., García-Ramos, A., Cepero, M., Miras-Moreno, S., Rojas, F. J., & Pérez-Castilla, A. (2022). Velocity performance feedback during the free-weight bench press testing procedure: an effective strategy to increase the reliability and one repetition maximum accuracy prediction. Journal of Strength and Conditioning Research, 36(4), 1077-1083. https://doi.org/10.1519/jsc.0000000000003609 DOI: https://doi.org/10.1519/JSC.0000000000003609
Juan-Recio, C., López-Plaza, D., Barbado Murillo, D., García-Vaquero, M. P., & Vera-García, F. J. (2018). Reliability assessment and correlation analysis of 3 protocols to measure trunk muscle strength and endurance. Journal of sports sciences, 36(4), 357-364. https://doi.org/10.1080/02640414.2017.1307439 DOI: https://doi.org/10.1080/02640414.2017.1307439
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Medicine & science in sports & exercise, 36(4), 674-688. https://doi.org/10.1249/01.mss.0000121945.36635.61 DOI: https://doi.org/10.1249/01.MSS.0000121945.36635.61
Krzysztofik, M., Wilk, M., Wojdała, G., & Gołaś, A. (2019). Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. International journal of environmental research and public health, 16(24), 4897. https://doi.org/10.3390/ijerph16244897 DOI: https://doi.org/10.3390/ijerph16244897
Lasevicius, T., Schoenfeld, B. J., Silva-Batista, C., Barros, T. D. S., Aihara, A. Y., Brendon, H., ... & Teixeira, E. L. (2022). Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. Journal of strength and conditioning research, 36(2), 346-351. https://doi.org/10.1519/jsc.0000000000003454 DOI: https://doi.org/10.1519/JSC.0000000000003454
Lawson, D., Vann, C., Schoenfeld, B. J., & Haun, C. (2022). Beyond Mechanical Tension: A Review of Resistance Exercise-Induced Lactate Responses & Muscle Hypertrophy. Journal of Functional Morphology and Kinesiology, 7(4), 81. https://doi.org/10.3390/jfmk7040081 DOI: https://doi.org/10.3390/jfmk7040081
Nuzzo, J. L., Pinto, M. D., & Nosaka, K. (2023). Muscle fatigue during maximal eccentric‐only, concentric‐only, and eccentric‐concentric bicep curl exercise with automated drop setting. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14330 DOI: https://doi.org/10.1111/sms.14330
Ozaki, H., Kubota, A., Natsume, T., Loenneke, J. P., Abe, T., Machida, S., & Naito, H. (2018). Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study. Journal of sports sciences, 36(6), 691-696. https://doi.org/10.1080/02640414.2017.1331042 DOI: https://doi.org/10.1080/02640414.2017.1331042
Ozaki, H., Loenneke, J. P., Buckner, S. L., & Abe, T. (2016). Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Medical hypotheses, 88, 22-26. https://doi.org/10.1016/j.mehy.2015.12.026 DOI: https://doi.org/10.1016/j.mehy.2015.12.026
Pallarés, J. G., Hernández‐Belmonte, A., Martínez‐Cava, A., Vetrovsky, T., Steffl, M., & Courel‐Ibáñez, J. (2021). Effects of range of motion on resistance training adaptations: A systematic review and meta‐analysis. Scandinavian journal of medicine & science in sports, 31(10), 1866-1881. https://doi.org/10.1111/sms.14006 DOI: https://doi.org/10.1111/sms.14006
Prestes, J., Tibana, R. A., de Araujo Sousa, E., da Cunha Nascimento, D., de Oliveira Rocha, P., Camarço, N. F., ... & Willardson, J. M. (2019). Strength and muscular adaptations after 6 weeks of rest-pause vs. traditional multiple-sets resistance training in trained subjects. The Journal of Strength & Conditioning Research, 33, S113-S121. https://doi.org/10.1519/jsc.0000000000001923 DOI: https://doi.org/10.1519/JSC.0000000000001923
Ribeiro, A. S., Romanzini, M., Schoenfeld, B. J., Souza, M. F., Avelar, A., & Cyrino, E. S. (2014). Effect of different warm-up procedures on the performance of resistance training exercises. Perceptual and motor skills, 119(1), 133-145. https://doi.org/10.2466/25.29.pms.119c17z7 DOI: https://doi.org/10.2466/25.29.PMS.119c17z7
Saric, J., Lisica, D., Orlic, I., Grgic, J., Krieger, J. W., Vuk, S., & Schoenfeld, B. J. (2019). Resistance training frequencies of 3 and 6 times per week produce similar muscular adaptations in resistance-trained men. The Journal of Strength & Conditioning Research, 33, S122-S129. https://doi.org/10.1519/jsc.0000000000002909 DOI: https://doi.org/10.1519/JSC.0000000000002909
Schoenfeld, B., Fisher, J., Grgic, J., Haun, C., Helms, E., Phillips, S., ... & Vigotsky, A. (2021). Resistance training recommendations to maximize muscle hypertrophy in an athletic population: Position stand of the IUSCA. International Journal of Strength and Conditioning, 1(1). https://doi.org/10.47206/ijsc.v1i1.81 DOI: https://doi.org/10.47206/ijsc.v1i1.81
Schoenfeld, B. J., Contreras, B., Krieger, J., Grgic, J., Delcastillo, K., Belliard, R., & Alto, A. (2019). Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and science in sports and exercise, 51(1), 94. https://doi.org/10.1249/mss.0000000000001764 DOI: https://doi.org/10.1249/MSS.0000000000001764
Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading recommendations for muscle strength, hypertrophy, and local endurance: a re-examination of the repetition continuum. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032 DOI: https://doi.org/10.3390/sports9020032
Schoenfeld, B. J. (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports medicine, 43, 179-194. https://doi.org/10.1007/s40279-013-0017-1 DOI: https://doi.org/10.1007/s40279-013-0017-1
Seynnes, O. R., de Boer, M., & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of applied physiology, 102(1), 368-373. https://doi.org/10.1152/japplphysiol.00789.2006 DOI: https://doi.org/10.1152/japplphysiol.00789.2006
Varović, D., Žganjer, K., Vuk, S., & Schoenfeld, B. J. (2021). Drop-Set training elicits differential increases in non-uniform hypertrophy of the quadriceps in leg extension exercise. Sports, 9(9), 119. https://doi.org/10.3390/sports9090119 DOI: https://doi.org/10.3390/sports9090119
Van Tittelboom, V., Alemdaroglu-Gürbüz, I., Hanssen, B., Heyrman, L., Feys, H., Desloovere, K., ... & Van den Broeck, C. (2022). Reliability of isokinetic strength assessments of knee and hip using the Biodex System 4 dynamometer and associations with functional strength in healthy children. Frontiers in Sports and Active Living, 4, 6. https://doi.org/10.3389/fspor.2022.817216 DOI: https://doi.org/10.3389/fspor.2022.817216
Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. Journal of applied physiology. https://doi.org/10.1152/japplphysiol.00685.2018 DOI: https://doi.org/10.1152/japplphysiol.00685.2018
Wilk, M., Zajac, A., & Tufano, J. J. (2021). The influence of movement tempo during resistance training on muscular strength and hypertrophy responses: a review. Sports medicine, 51(8), 1629-1650. https://doi.org/10.1007/s40279-021-01465-2 DOI: https://doi.org/10.1007/s40279-021-01465-2