Utilizing GPS technology to identify and manage hamstring injuries during high-speed running A scoping review

Main Article Content

Ernest Miller
https://orcid.org/0009-0003-7101-7563
Brandon Surber
https://orcid.org/0009-0002-5315-2836
Lucas Vrooman
https://orcid.org/0009-0009-7711-4253
Stephanie Hendren
https://orcid.org/0000-0001-6258-4046
Heather Myers
https://orcid.org/0000-0001-7444-4921

Abstract

Purpose: Hamstring injuries are among the most prevalent injuries in elite sport with high rates of recurrence. Global Positioning System (GPS) technology has been widely implemented to measure the movement of athletes. The purpose of this scoping review is to examine how GPS technology is used to manage hamstring injuries during high-speed running. Methods: A scoping review was conducted within Embase, CINAHLComplete, SPORTDiscus, and Scopus. Studies were included if they used objective GPS metrics and investigated their relationship to hamstring injuries or risk factors. Studies were excluded if they did not report hamstring injuries separately. Results: 3950 articles were reviewed and 15 met inclusion criteria. Most studies were conducted with elite male soccer players. The most common GPS metrics reported included total distance traveled, high speed running distance over 24 km/hour, the acute to chronic workload ratio, and efforts exceeding 80% of maximum speed. Clinical relevance: The current literature on GPS monitoring for hamstring injury management focuses on elite male soccer players, with limitations due to varying injury definitions and a lack of prospective trials. Clinicians may consider managing high-speed running loads above 24 km/h and 80% of maximum speed to modify hamstring injury risk in elite male soccer players.

Article Details

How to Cite
Miller, E., Surber, B., Vrooman, L., Hendren, S., & Myers, H. (2025). Utilizing GPS technology to identify and manage hamstring injuries during high-speed running: A scoping review. Scientific Journal of Sport and Performance, 4(2), 162–176. https://doi.org/10.55860/IIGA8100
Section
Review Paper

References

Aiello, F., Di Claudio, C., Fanchini, M., Impellizzeri, F. M., McCall, A., Sharp, C., & Brown, S. J. (2023). Do non-contact injuries occur during high-speed running in elite football? Preliminary results from a novel GPS and video-based method. Journal of Science & Medicine in Sport, 26(9), 465-470. https://doi.org/10.1016/j.jsams.2023.07.007 DOI: https://doi.org/10.1016/j.jsams.2023.07.007

Al Attar, W. S. A., Soomro, N., Sinclair, P. J., Pappas, E., & Sanders, R. H. (2017). Effect of Injury Prevention Programs that Include the Nordic Hamstring Exercise on Hamstring Injury Rates in Soccer Players: A Systematic Review and Meta-Analysis. Sports Medicine (Auckland, N.Z.), 47(5), 907-916. https://doi.org/10.1007/s40279-016-0638-2 DOI: https://doi.org/10.1007/s40279-016-0638-2

Alonso-Fernandez, D., Docampo-Blanco, P., & Martinez-Fernandez, J. (2018). Changes in muscle architecture of biceps femoris induced by eccentric strength training with Nordic hamstring exercise. Scandinavian Journal of Medicine & Science in Sports, 28(1), 88-94. https://doi.org/10.1111/sms.12877 DOI: https://doi.org/10.1111/sms.12877

Buchheit, M., Settembre, M., Hader, K., & McHugh, D. (2023). Exposures to near-to-maximal speed running bouts during different turnarounds in elite football: Association with match hamstring injuries. Biol Sport, 40(4), 1057-1067. https://doi.org/10.5114/biolsport.2023.125595 DOI: https://doi.org/10.5114/biolsport.2023.125595

Covidence systematic review software. (n.d.). [Computer software]. Veritas Health Innovation. Retrieved from [Accessed 2025, February 04]: www.covidence.org

Cuthbert, M., Ripley, N., McMahon, J. J., Evans, M., Haff, G. G., & Comfort, P. (2020). The Effect of Nordic Hamstring Exercise Intervention Volume on Eccentric Strength and Muscle Architecture Adaptations: A Systematic Review and Meta-analyses. Sports Medicine (Auckland, N.Z.), 50(1), 83-99. https://doi.org/10.1007/s40279-019-01178-7 DOI: https://doi.org/10.1007/s40279-019-01178-7

Duhig, S., Shield, A. J., Opar, D., Gabbett, T. J., Ferguson, C., & Williams, M. (2016). Effect of high-speed running on hamstring strain injury risk. Br J Sports Med, 50(24), 1536-1540. https://doi.org/10.1136/bjsports-2015-095679 DOI: https://doi.org/10.1136/bjsports-2015-095679

Ekstrand, J., Bengtsson, H., Waldén, M., Davison, M., Khan, K. M., & Hägglund, M. (2023). Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men's professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. British Journal of Sports Medicine, 57(5), 292-298. https://doi.org/10.1136/bjsports-2021-105407 DOI: https://doi.org/10.1136/bjsports-2021-105407

French, D., & Torres-Ronda, L. (2022). Characteristics of Tracking Systems and Load Monitoring. In NSCA's Essential of Sports Science (p. 116). Human Kinetics.

Gérard, R., Gojon, L., Decleve, P., & Van Cant, J. (2020). The Effects of Eccentric Training on Biceps Femoris Architecture and Strength: A Systematic Review With Meta-Analysis. Journal of Athletic Training, 55(5), 501-514. https://doi.org/10.4085/1062-6050-194-19 DOI: https://doi.org/10.4085/1062-6050-194-19

Gómez-Piqueras, P., & Alcaraz, P. E. (2024). If You Want to Prevent Hamstring Injuries in Soccer, Run Fast: A Narrative Review about Practical Considerations of Sprint Training. Sports (Basel, Switzerland), 12(5), 134. https://doi.org/10.3390/sports12050134 DOI: https://doi.org/10.3390/sports12050134

Hallén, A., Tomás, R., Ekstrand, J., Bengtsson, H., Van den Steen, E., Hägglund, M., & Waldén, M. (2024). UEFA Women's Elite Club Injury Study: A prospective study on 1527 injuries over four consecutive seasons 2018/2019 to 2021/2022 reveals thigh muscle injuries to be most common and ACL injuries most burdensome. British Journal of Sports Medicine, 58(3), 128-135. https://doi.org/10.1136/bjsports-2023-107133 DOI: https://doi.org/10.1136/bjsports-2023-107133

Hoppen, M. I., Reurink, G., de Boode, V. A., van der Kaaden, L., Jagtman, L., Glazenburg, T., Bruning, B., & Tol, J. L. (2022). Return to match running performance after a hamstring injury in elite football: A single-centre retrospective cohort study. BMJ Open Sport Exerc Med, 8(1), e001240. https://doi.org/10.1136/bmjsem-2021-001240 DOI: https://doi.org/10.1136/bmjsem-2021-001240

Hulin, B. T., Gabbett, T. J., Lawson, D. W., Caputi, P., & Sampson, J. A. (2016). The acute: chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. British Journal of Sports Medicine, 50(4), 231-236. https://doi.org/10.1136/bjsports-2015-094817 DOI: https://doi.org/10.1136/bjsports-2015-094817

Impellizzeri, F. M., McCall, A., & van Smeden, M. (2021). Why methods matter in a meta-analysis: A reappraisal showed inconclusive injury preventive effect of Nordic hamstring exercise. Journal of Clinical Epidemiology, 140, 111-124. https://doi.org/10.1016/j.jclinepi.2021.09.007 DOI: https://doi.org/10.1016/j.jclinepi.2021.09.007

Impellizzeri, F. M., Menaspà, P., Coutts, A. J., Kalkhoven, J., & Menaspà, M. J. (2020). Training Load and Its Role in Injury Prevention, Part I: Back to the Future. Journal of Athletic Training, 55(9), 885-892. https://doi.org/10.4085/1062-6050-500-19 DOI: https://doi.org/10.4085/1062-6050-500-19

Kim, S. (2013). Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol, 66(4), 408-414. https://doi.org/10.1016/j.jclinepi.2012.09.016 DOI: https://doi.org/10.1016/j.jclinepi.2012.09.016

Li, R. T., Salata, M. J., Rambhia, S., Sheehan, J., & Voos, J. E. (2020). Does Overexertion Correlate With Increased Injury? The Relationship Between Player Workload and Soft Tissue Injury in Professional American Football Players Using Wearable Technology. Sports Health, 12(1), 66-73. https://doi.org/10.1177/1941738119868477 DOI: https://doi.org/10.1177/1941738119868477

Mack, C. D., Kent, R. W., Coughlin, M. J., Shiue, K. Y., Weiss, L. J., Jastifer, J. R., Wojtys, E. M., & Anderson, R. B. (2020). Incidence of Lower Extremity Injury in the National Football League: 2015 to 2018. The American Journal of Sports Medicine, 48(9), 2287-2294. https://doi.org/10.1177/0363546520922547 DOI: https://doi.org/10.1177/0363546520922547

Madison, G., Patterson, S. D., Read, P., Howe, L., & Waldron, M. (2019). Effects of Small-Sided Game Variation on Changes in Hamstring Strength. Journal of Strength and Conditioning Research, 33(3), 839-845. https://doi.org/10.1519/JSC.0000000000002955 DOI: https://doi.org/10.1519/JSC.0000000000002955

Martin, R. L., Cibulka, M. T., Bolgla, L. A., Koc, T. A., Loudon, J. K., Manske, R. C., Weiss, L., Christoforetti, J. J., & Heiderscheit, B. C. (2022). Hamstring Strain Injury in Athletes. The Journal of Orthopaedic and Sports Physical Therapy, 52(3), CPG1-CPG44. https://doi.org/10.2519/jospt.2022.0301 DOI: https://doi.org/10.2519/jospt.2022.0301

McCall, A., Dupont, G., & Ekstrand, J. (2018). Internal workload and non-contact injury: A one-season study of five teams from the UEFA Elite Club Injury Study. British Journal of Sports Medicine, 52(23), 1517-1522. https://doi.org/10.1136/bjsports-2017-098473 DOI: https://doi.org/10.1136/bjsports-2017-098473

Mjølsnes, R., Arnason, A., Østhagen, T., Raastad, T., & Bahr, R. (2004). A 10-week randomized trial comparing eccentric vs. Concentric hamstring strength training in well-trained soccer players. Scandinavian Journal of Medicine & Science in Sports, 14(5), 311-317. https://doi.org/10.1046/j.1600-0838.2003.367.x DOI: https://doi.org/10.1046/j.1600-0838.2003.367.x

Moreno-Pérez, V., Del Coso, J., López-Del Campo, R., Resta, R., Romero-Sangüesa, J., Courel-Ibáñez, J., & Méndez-Villanueva, A. (2023). Reduced Match Exposure in the Previous 2 Matches Accounts for Hamstring Muscle Injury Incidence in Professional Football Players. Sports Health. https://doi.org/10.1177/19417381231158117 DOI: https://doi.org/10.1177/19417381231158117

Moreno-Perez, V., Paredes, V., Pastor, D., Garrosa, F. N., Vielcazat, S. J., Coso, J. D., & Mendez-Villanueva, A. (2021). Under-exposure to official matches is associated with muscle injury incidence in professional footballers. Biology of Sport, 38(4), 563-571. https://doi.org/10.5114/biolsport.2021.100360 DOI: https://doi.org/10.5114/biolsport.2021.100360

NFL'S Scientific Advisory Board Awards $4 Million in Research Funding on Hamstring Injuries. (n.d.). NFL.Com. Retrieved from [Accessed 2025, February 04]: https://www.nfl.com/playerhealthandsafety/resources/press-releases/nfl-s-scientific-advisory-board-awards-4-million-in-research-funding-on-hamstrin

Okoroha, K. R., Conte, S., Makhni, E. C., Lizzio, V. A., Camp, C. L., Li, B., & Ahmad, C. S. (2019). Hamstring Injury Trends in Major and Minor League Baseball: Epidemiological Findings From the Major League Baseball Health and Injury Tracking System. Orthopaedic Journal of Sports Medicine, 7(7). https://doi.org/10.1177/2325967119861064 DOI: https://doi.org/10.1177/2325967119861064

Opar, D. A., Williams, M. D., & Shield, A. J. (2012). Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Medicine (Auckland, N.Z.), 42(3), 209-226. https://doi.org/10.2165/11594800-000000000-00000 DOI: https://doi.org/10.2165/11594800-000000000-00000

Opar, D. A., Williams, M. D., Timmins, R. G., Hickey, J., Duhig, S. J., & Shield, A. J. (2015). Eccentric hamstring strength and hamstring injury risk in Australian footballers. Medicine and Science in Sports and Exercise, 47(4), 857-865. https://doi.org/10.1249/MSS.0000000000000465 DOI: https://doi.org/10.1249/MSS.0000000000000465

Petersen, J., Thorborg, K., Nielsen, M. B., Budtz-Jørgensen, E., & Hölmich, P. (2011). Preventive effect of eccentric training on acute hamstring injuries in men's soccer: A cluster-randomized controlled trial. The American Journal of Sports Medicine, 39(11), 2296-2303. https://doi.org/10.1177/0363546511419277 DOI: https://doi.org/10.1177/0363546511419277

Ribeiro-Alvares, J. B., Cetolin, T., Haupenthal, A., & Baroni, B. M. (2023). Acute: chronic workload ratio of professional soccer players preceding hamstring muscle injuries: A 2-season retrospective study. Sport Sci. Health. https://doi.org/10.1007/s11332-023-01127-y DOI: https://doi.org/10.1007/s11332-023-01127-y

Ruddy, J. D., Pollard, C. W., Timmins, R. G., Williams, M. D., Shield, A. J., & Opar, D. A. (2018). Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br J Sports Med, 52(14), 919-928. https://doi.org/10.1136/bjsports-2016-096777 DOI: https://doi.org/10.1136/bjsports-2016-096777

Satkunskiene, D., da Silva, T. M., Kamandulis, S., Leite, N. M. C., Domeika, A., Mickevicius, M., & Snieckus, A. (2020). Effect of Training and Match Loads on Hamstring Passive Stiffness in Professional Soccer Players. J Musculoskelet Neuronal Interact, 20(4), 488-497.

Seagrave, R. A., Perez, L., McQueeney, S., Toby, E. B., Key, V., & Nelson, J. D. (2014). Preventive Effects of Eccentric Training on Acute Hamstring Muscle Injury in Professional Baseball. Orthopaedic Journal of Sports Medicine, 2(6), 2325967114535351. https://doi.org/10.1177/2325967114535351 DOI: https://doi.org/10.1177/2325967114535351

Shah, S., Collins, K., & Macgregor, L. J. (2022). The Influence of Weekly Sprint Volume and Maximal Velocity Exposures on Eccentric Hamstring Strength in Professional Football Players. Sports (2075-4663), 10(8), 125-125. https://doi.org/10.3390/sports10080125 DOI: https://doi.org/10.3390/sports10080125

Stares, J., Dawson, B., Peeling, P., Drew, M., Heasman, J., Rogalski, B., & Colby, M. (2018). How much is enough in rehabilitation? High running workloads following lower limb muscle injury delay return to play but protect against subsequent injury. Journal of Science and Medicine in Sport, 21(10), 1019-1024. https://doi.org/10.1016/j.jsams.2018.03.012 DOI: https://doi.org/10.1016/j.jsams.2018.03.012

Timmins, R. G., Bourne, M. N., Shield, A. J., Williams, M. D., Lorenzen, C., & Opar, D. A. (2016). Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. British Journal of Sports Medicine, 50(24), 1524-1535. https://doi.org/10.1136/bjsports-2015-095362 DOI: https://doi.org/10.1136/bjsports-2015-095362

van der Horst, N., Smits, D.-W., Petersen, J., Goedhart, E. A., & Backx, F. J. G. (2015). The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. The American Journal of Sports Medicine, 43(6), 1316-1323. https://doi.org/10.1177/0363546515574057 DOI: https://doi.org/10.1177/0363546515574057

van Dyk, N., Behan, F. P., & Whiteley, R. (2019). Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: A systematic review and meta-analysis of 8459 athletes. British Journal of Sports Medicine, 53(21), 1362-1370. https://doi.org/10.1136/bjsports-2018-100045. DOI: https://doi.org/10.1136/bjsports-2018-100045

Whiteley, R., Gregson, W., Bahr, R., Tabben, M., Chamari, K., Lolli, L., & Salvo, V. D. (2022). High-speed running during match-play before and after return from hamstring injury in professional footballers. Scand J Med Sci Sports, 32(10), 1502-1509. https://doi.org/10.1111/sms.14219 DOI: https://doi.org/10.1111/sms.14219

Whiteley, R., Massey, A., Gabbett, T., Blanch, P., Cameron, M., Conlan, G., Ford, M., & Williams, M. (2021). Match High-Speed Running Distances Are Often Suppressed After Return From Hamstring Strain Injury in Professional Footballers. Sports Health: A Multidisciplinary Approach, 13(3), 290-295. https://doi.org/10.1177/1941738120964456 DOI: https://doi.org/10.1177/1941738120964456