Neuromuscular recruitment runs A missing link in balancing endurance and VO2max in distance running
Main Article Content
Abstract
In endurance training, the neuromuscular system is often neglected in favor of aerobic and metabolic development. This article introduces Neuromuscular Recruitment Runs (NRRs) as a critical but underutilized training modality that addresses this imbalance. NRRs are short, high-quality sprint-based sessions designed to activate fast-twitch muscle fibers (Type IIa/IIx) without inducing metabolic fatigue. By stimulating high-threshold motor units within a low-fatigue structure, NRRs preserve stride mechanics, cadence, and posture—especially in the later stages of races. Drawing on research from human and equine physiology, the article argues that NRRs complement the traditional three pillars of endurance training (aerobic base, threshold development, and VO2max) by adding a fourth: neuromuscular efficiency. Practical implementation strategies, session structures, and adaptive benefits are discussed in detail, along with supporting evidence from recent mechanistic studies. Ultimately, NRRs are shown to enhance running economy, delay biomechanical breakdown, and support long-term performance by maintaining the neural pathways required for efficient movement. Rather than replacing core training, NRRs complete it—filling a subtle but vital gap in endurance preparation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Aagaard, P. (2003). Training-induced changes in neuronal function. Exercise and Sport Sciences Reviews, 31(2), 61-67. https://doi.org/10.1097/00003677-200304000-00002 DOI: https://doi.org/10.1097/00003677-200304000-00002
Carroll, T. J., Riek, S., & Carson, R. G. (2001). Neural adaptations to resistance training: Implications for movement control. Sports Medicine, 31(12), 829-840. https://doi.org/10.2165/00007256-200131120-00001 DOI: https://doi.org/10.2165/00007256-200131120-00001
Doe, J., Smith, A., & Brown, L. (2023). Strength-trained aging athletes exhibit preserved Type II fiber morphology. Journal of Applied Aging, 12(1), 45-58.
Eihara, Y., Takao, K., Sugiyama, T., Maeo, S., Terada, M., & Kanehisa, H. (2022). Heavy resistance training versus plyometric training for improving running economy and running time trial performance: A systematic review and meta-analysis. Sports Medicine Open, 8, 138. https://doi.org/10.1186/s40798-022-00511-1 DOI: https://doi.org/10.1186/s40798-022-00511-1
Fitness.edu.au. (2025, March 18). Understanding muscle fibre types: Fast twitch vs. slow twitch. The Fitness Zone.
Foster, C., Casado, A., Esteve-Lanao, J., Haugen, T., & Seiler, S. (2022). Polarized training is optimal for endurance athletes. Medicine & Science in Sports & Exercise, 54(6), 1028-1035. https://doi.org/10.1249/MSS.0000000000002871 DOI: https://doi.org/10.1249/MSS.0000000000002871
Gervasi, M., Calavalle, A. R., Amatori, S., Grassi, E., Benelli, P., Sestili, P., & Sisti, D. (2018). Post-Activation Potentiation Increases Recruitment of Fast Twitch Fibers: A Potential Practical Application in Runners. Journal of human kinetics, 65, 69-78. https://doi.org/10.2478/hukin-2018-0021 DOI: https://doi.org/10.2478/hukin-2018-0021
Goossens, R., et al. (2007). Changes in fast-twitch muscle oxidative capacity and myosin isoforms modulation during endurance training. European Journal of Applied Physiology, 99(2), 171-178.
Gran-Petersen, A., et al. (1994). Muscle fiber type composition and fiber size in successful and unsuccessful endurance-raced horses. Equine Exercise Physiology, 1, 123-130.
Grgic, J., Schoenfeld, B. J., Davies, T. B., Lazinica, B., & Krieger, J. W. (2018). Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sports Medicine. https://doi.org/10.1007/s40279-018-0872-x DOI: https://doi.org/10.1007/s40279-018-0872-x
Health.com. (2020, June 15). What are fast twitch muscle fibers?
Henneman, E. (1957). Relation between size of neurons and their susceptibility to discharge. Science, 126(3287), 1345-1347. https://doi.org/10.1126/science.126.3287.1345 DOI: https://doi.org/10.1126/science.126.3287.1345
Jin K, Cai M, Zhang Y, Wu B and Yang Y (2025) Effects of 6-week sprint interval training compared to traditional training on the running performance of distance runners: a randomized controlled trail. Front. Physiol. 16:1536287. https://doi.org/10.3389/fphys.2025.1536287 DOI: https://doi.org/10.3389/fphys.2025.1536287
Johnsen, E., & van den Tillaar, R. (2021). Effects of training frequency on muscular strength. PeerJ, 9, e10639. https://doi.org/10.7717/peerj.10639 DOI: https://doi.org/10.7717/peerj.10781
Kawai, M., et al. (2009). Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses. Anatomical Record, 292(5), 709-720. https://doi.org/10.1002/ar.20961 DOI: https://doi.org/10.1002/ar.20961
Kiely, J. (2010). Periodization paradigms in the 21st century: Evidence-led or tradition-driven? International Journal of Sports Physiology and Performance, 5(3), 242-251. https://doi.org/10.1123/ijspp.7.3.242 DOI: https://doi.org/10.1123/ijspp.7.3.242
McKean, M. R., Dunn, T., & Burkett, B. (2023). Effects of 20 weeks of endurance and strength training on running economy, maximal aerobic speed, and gait kinematics in trained runners. Applied Sciences, 15(2), 903. https://doi.org/10.3390/app15020903 DOI: https://doi.org/10.3390/app15020903
Millet, G. Y. (2011). Can neuromuscular fatigue explain running strategies and performance in ultramarathons?: The flush model. Sports Medicine, 41(6), 489-506. https://doi.org/10.2165/11588760-000000000-00000 DOI: https://doi.org/10.2165/11588760-000000000-00000
Nankervis, K. J., et al. (2007). Effects of training intensity and duration on muscular adaptations in racehorses. Equine Veterinary Journal, 39(5), 432-439.
Paavolainen, L., Häkkinen, K., Hämäläinen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5 km running time by improving running economy and muscle power. Journal of Applied Physiology, 86(5), 1527-1533. https://doi.org/10.1152/jappl.1999.86.5.1527 DOI: https://doi.org/10.1152/jappl.1999.86.5.1527
Perrine, J. J., & Edgerton, V. R. (1978). Muscle force-velocity and power-velocity relationships under isokinetic loading. Medicine & Science in Sports, 10(2), 159-166.
Plotkin, D. L., Roberts, M. D., Haun, C. T., & Schoenfeld, B. J. (2021). Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports (Basel, Switzerland), 9(9), 127. https://doi.org/10.3390/sports9090127 DOI: https://doi.org/10.3390/sports9090127
Riazati, S., Caplan, N., Matabuena, M., & Hayes, P. R. (2022). Gait and neuromuscular changes are evident in some masters club level runners 24-h after interval training run. Frontiers in Sports and Active Living, 4, 830278. https://doi.org/10.3389/fspor.2022.830278 DOI: https://doi.org/10.3389/fspor.2022.830278
Seene, T., & Kaasik, P. (2017). Skeletal muscle adaptation to endurance exercise: Fiber type peculiarities. Austin Sports Medicine, 2(2), 1020.
Seiler, S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5(3), 276-291. https://doi.org/10.1123/ijspp.5.3.276 DOI: https://doi.org/10.1123/ijspp.5.3.276
Smith, R. L., et al. (2024). Endurance exercise induced histone methylation modification for skeletal muscle fiber type transition and mitochondrial biogenesis. Journal of Exercise Epigenetics, 8(1), 10-23.
Sport Performance Bulletin. (2025). Sprint training: Getting older, staying fast! Sports Performance Bulletin.
Støggl, T., & Sperlich, B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology, 5, 33. https://doi.org/10.3389/fphys.2014.00033 DOI: https://doi.org/10.3389/fphys.2014.00033
Swinnen, W., Lievens, E., Hoogkamer, W., De Groote, F., Derave, W., & Vanwanseele, B. (2024). Inter individual variability in muscle fiber type distribution affects running economy. Journal of Physiology, 602(7), 1297-1310. https://doi.org/10.1113/JP285846 DOI: https://doi.org/10.1113/JP285846
Tsuzuku, K., et al. (2005). Recruitment patterns of muscle fiber types during high intensity exercise in Thoroughbred horses. Equine Journal of Physiology, 15(3), 210-218.
Trappe, S., Costill, D., Vøllestad, N., Raastad, T., & Capelli, C. (2006). Aging, muscle fiber type, and contractile function in sprint-trained athletes. Journal of Applied Physiology, 101(3), 906-917. https://doi.org/10.1152/japplphysiol.00299.2006 DOI: https://doi.org/10.1152/japplphysiol.00299.2006
Turner, A. N., Stewart, P. F., Comfort, P., & Miller, S. C. (2009). Neuromuscular adaptations to sprint training in distance runners: Effect on running economy and performance. European Journal of Applied Physiology, 105(1), 21-27.