A meta-analytic comparison of the effects of consuming carbohydrate with and without protein on postexercise plasma insulin and glucagon responses in healthy, trained males

Main Article Content

Tzu-Yu Kuo
Jennifer Barnes
Kelly Laurson
Luke Russell


This meta-analysis evaluates how hydrolysed protein and carbohydrate (CHO) mixtures compare with intact protein and CHO mixtures regarding post-exercise plasma insulin and glucagon responses in healthy endurance trained males. Studies measuring insulin and/or glucagon following an exercise bout with ingestion of CHO vs. CHO+ protein were included. Random-effects meta-analyses were conducted on the insulin peaks over time. Overall, 33 trials from 20 articles were included. The ingestion of CHO+ protein induced significantly higher insulin peaks than ingestion of CHO only from 30 to 240 minutes postexercise (30-180 min: p < .001, 210-240 min: p < .01), higher insulin area under the curve (p < .001), and greater muscle FSR ( p < .001). No statistically significant differences on insulin peaks over time were found between the ingestion of CHO+ intact protein and CHO+ hydrolysed protein or differences in muscle glycogen synthesis rate or glycogen peaks. Findings provide evidence the co-ingestion of CHO+ protein is a better strategy for recovery for endurance-type male athletes than the ingestion of CHO only. However, more research is warranted to understand whether there are differences between the ingestion of intact protein and its hydrolysed counterpart with CHO, and the impact on glucagon responses.

Article Details

How to Cite
Kuo, T.-Y., Barnes, J., Laurson, K., & Russell, L. (2023). A meta-analytic comparison of the effects of consuming carbohydrate with and without protein on postexercise plasma insulin and glucagon responses in healthy, trained males. Scientific Journal of Sport and Performance, 2(3), 256–271. https://doi.org/10.55860/XVLL6808
Review Paper
Author Biographies

Tzu-Yu Kuo, Illinois State University

Department of Family and Consumer Sciences.

Jennifer Barnes, Illinois State University

Department of Family and Consumer Sciences.

Kelly Laurson, Illinois State University

School of Kinesiology and Recreation.

Luke Russell, Illinois State University

Department of Family and Consumer Sciences.


Ang, T., Bruce, C. R., & Kowalski, G. M. (2019). Postprandial aminogenic insulin and glucagon secretion can stimulate glucose flux in humans. Diabetes, 68(5), 939-946. https://doi.org/10.2337/db18-1138 DOI: https://doi.org/10.2337/db18-1138

Bak, J. F., Møller, N., Schmitz, O., Richter, E. A., & Pedersen, O. (1991). Effects of hyperinsulinemia and hyperglycemia on insulin receptor function and glycogen synthase activation in skeletal muscle of normal man. Metabolism, 40(8), 830-835. https://doi.org/10.1016/0026-0495(91)90011-K DOI: https://doi.org/10.1016/0026-0495(91)90011-K

Beelen, M., Tieland, M., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., & van Loon, L. J. (2008). Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. The Journal of Nutrition, 138(11), 2198-2204. https://doi.org/10.3945/jn.108.092924 DOI: https://doi.org/10.3945/jn.108.092924

Betts, J. A., Stevenson, E., Williams, C., Sheppard, C., Grey, E., & Griffin, J. (2005). Recovery of endurance running capacity: effect of carbohydrate-protein mixtures. International Journal of Sport Nutrition and Exercise Metabolism, 15(6), 590-609. https://doi.org/10.1123/ijsnem.15.6.590 DOI: https://doi.org/10.1123/ijsnem.15.6.590

Betts, J., Williams, C., Duffy, K., & Gunner, F. (2007). The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. Journal of Sports Sciences, 25(13), 1449-1460. https://doi.org/10.1080/02640410701213459 DOI: https://doi.org/10.1080/02640410701213459

Børsheim, E., Cree, M. G., Tipton, K. D., Elliott, T. A., Aarsland, A., & Wolfe, R. R. (2004). Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. Journal of Applied Physiology, 96(2), 674-678. https://doi.org/10.1152/japplphysiol.00333.2003 DOI: https://doi.org/10.1152/japplphysiol.00333.2003

Breen, L., Philp, A., Witard, O. C., Jackman, S. R., Selby, A., Smith, K., & Tipton, K. D. (2011). The influence of carbohydrate-protein co‐ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. The Journal of Physiology, 589(16), 4011-4025. https://doi.org/10.1113/jphysiol.2011.211888 DOI: https://doi.org/10.1113/jphysiol.2011.211888

Burke, L. M., Collier, G. R., & Hargreaves, M. (1993). Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. Journal of Applied Physiology, 75(2), 1019-1023. https://doi.org/10.1152/jappl.1993.75.2.1019 DOI: https://doi.org/10.1152/jappl.1993.75.2.1019

Burke, L. M., Kiens, B., & Ivy, J. L. (2004). Carbohydrates and fat for training and recovery. Journal of Sports Sciences, 22(1), 15-30. https://doi.org/10.1080/0264041031000140527 DOI: https://doi.org/10.1080/0264041031000140527

Calcagno, M., Kahleova, H., Alwarith, J., Burgess, N. N., Flores, R. A., Busta, M. L., & Barnard, N. D. (2019). The thermic effect of food: A Review. Journal of the American College of Nutrition, 38(6), 547-551. https://doi.org/10.1080/07315724.2018.1552544 DOI: https://doi.org/10.1080/07315724.2018.1552544

Cepero, M., Padial, R., Rojas, F. J., Geerlings, A., De la Cruz, J. C., & Boza, J. J. (2010). Influence of ingesting casein protein and whey protein carbohydrate beverages on recovery and performance of an endurance cycling test. Journal of Human Sport and Exercise, (II), 158-175. https://doi.org/10.4100/jhse.2010.52.06 DOI: https://doi.org/10.4100/jhse.2010.52.06

Claessens, M., Saris, W. H., & van Baak, M. A. (2008). Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. British Journal of Nutrition, 100(1), 61-69. https://doi.org/10.1017/S0007114507886314 DOI: https://doi.org/10.1017/S0007114507886314

Churchward-Venne, T. A., Pinckaers, P. J., Smeets, J. S., Peeters, W. M., Zorenc, A. H., Schierbeek, H., & van Loon, L. J. (2019). Myofibrillar and mitochondrial protein synthesis rates do not differ in young men following the ingestion of carbohydrate with milk protein, whey, or micellar casein after concurrent resistance-and endurance-type exercise. The Journal of Nutrition, 149(2), 198-209. https://doi.org/10.1093/jn/nxy244 DOI: https://doi.org/10.1093/jn/nxy244

Churchward-Venne, T. A., Pinckaers, P. J., Smeets, J. S., Betz, M. W., Senden, J. M., Goessens, J. P., ... & van Loon, L. J. (2020). Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. The American Journal of Clinical Nutrition, 112(2), 303-317. https://doi.org/10.1093/ajcn/nqaa073 DOI: https://doi.org/10.1093/ajcn/nqaa073

Cogan, K. E., Evans, M., Iuliano, E., Melvin, A., Susta, D., Neff, K., ... & Egan, B. (2018). Co-ingestion of protein or a protein hydrolysate with carbohydrate enhances anabolic signaling, but not glycogen resynthesis, following recovery from prolonged aerobic exercise in trained cyclists. European Journal of Applied Physiology, 118(2), 349-359. https://doi.org/10.1007/s00421-017-3775-x DOI: https://doi.org/10.1007/s00421-017-3775-x

Costill, D. L., Sherman, W. M., Fink, W. J., Maresh, C., Witten, M., & Miller, J. M. (1981). The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. The American Journal of Clinical Nutrition, 34(9), 1831-1836. https://doi.org/10.1093/ajcn/34.9.1831 DOI: https://doi.org/10.1093/ajcn/34.9.1831

Dahl, M. A., Areta, J. L., Jeppesen, P. B., Birk, J. B., Johansen, E. I., Ingemann-Hansen, T., ... & Jensen, J. (2020). Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. Journal of Applied Physiology, 129(2), 297-310. https://doi.org/10.1152/japplphysiol.00817.2019 DOI: https://doi.org/10.1152/japplphysiol.00817.2019

Farnfield, M. M., Trenerry, C., Carey, K. A., & Cameron-Smith, D. (2009). Plasma amino acid response after ingestion of different whey protein fractions. International Journal of Food Sciences and Nutrition, 60(6), 476-486. https://doi.org/10.1080/09637480701833465 DOI: https://doi.org/10.1080/09637480701833465

Gannon, M. C., & Nuttall, F. Q. (2010). Amino acid ingestion and glucose metabolism-a review. IUBMB life, 62(9), 660-668. https://doi.org/10.1002/iub.375 DOI: https://doi.org/10.1002/iub.375

Hausswirth, C., & Le Meur, Y. (2011). Physiological and nutritional aspects of post-exercise recovery. Sports Medicine, 41(10), 861-882. https://doi.org/10.2165/11593180-000000000-00000 DOI: https://doi.org/10.2165/11593180-000000000-00000

Heavens, K. R., Szivak, T. K., Hooper, D. R., Dunn-Lewis, C., Comstock, B. A., Flanagan, S. D., ... & Kraemer, W. J. (2014). The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. The Journal of Strength & Conditioning Research, 28(4), 1041-1049. https://doi.org/10.1097/JSC.0000000000000236 DOI: https://doi.org/10.1097/JSC.0000000000000236

Holst, J. J., Albrechtsen, N. J. W., Pedersen, J., & Knop, F. K. (2017). Glucagon and amino acids are linked in a mutual feedback cycle: the liver-α-cell axis. Diabetes, 66(2), 235-240. https://doi.org/10.2337/db16-0994 DOI: https://doi.org/10.2337/db16-0994

Holst, J. J., & Wewer Albrechtsen, N. J. (2019). Methods and guidelines for measurement of glucagon in plasma. International Journal of Molecular Sciences, 20(21), 5416. https://doi.org/10.3390/ijms20215416 DOI: https://doi.org/10.3390/ijms20215416

Hill, J. O., Heymsfield, S. B., McMannus III, C., & DiGirolamo, M. (1984). Meal size and thermic response to food in male subjects as a function of maximum aerobic capacity. Metabolism, 33(8), 743-749. https://doi.org/10.1016/0026-0495(84)90216-6 DOI: https://doi.org/10.1016/0026-0495(84)90216-6

Howarth, K. R., Moreau, N. A., Phillips, S. M., & Gibala, M. J. (2009). Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. Journal of Applied Physiology, 2009 106(4), 1394-1402. https://doi.org/10.1152/japplphysiol.90333.2008 DOI: https://doi.org/10.1152/japplphysiol.90333.2008

Ivy, J. L., Katz, A. L., Cutler, C. L., Sherman, W. M., & Coyle, E. F. (1988a). Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. Journal of Applied Physiology, 64(4), 1480-1485. https://doi.org/10.1152/jappl.1988.64.4.1480 DOI: https://doi.org/10.1152/jappl.1988.64.4.1480

Ivy, J. L., & KUO, C. H. (1998). Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica Scandinavica, 162(3), 295-304. https://doi.org/10.1046/j.1365-201X.1998.0302e.x DOI: https://doi.org/10.1046/j.1365-201X.1998.0302e.x

Ivy, J. L., Sprague, R. C., & Widzer, M. O. (2003). Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. International Journal of Sport Nutrition and Exercise Metabolism, 13(3), 382-395. https://doi.org/10.1123/ijsnem.13.3.382 DOI: https://doi.org/10.1123/ijsnem.13.3.382

Jentjens, R. L., Van Loon, L. J., Mann, C. H., Wagenmakers, A. J., & Jeukendrup, A. E. (2001). Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. Journal of Applied Physiology, 91(2), 839-846. https://doi.org/10.1152/jappl.2001.91.2.839 DOI: https://doi.org/10.1152/jappl.2001.91.2.839

Jentjens, R., & Jeukendrup, A. E. (2003). Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine, 33(2), 117-144. https://doi.org/10.2165/00007256-200333020-00004 DOI: https://doi.org/10.2165/00007256-200333020-00004

Kaastra, B., Manders, R. J., Van Breda, E., Kies, A., Jeukendrup, A. E., Keizer, H. A., ... & Van Loon, L. J. (2006). Effects of increasing insulin secretion on acute postexercise blood glucose disposal. Medicine and Science in Sports and Exercise, 38(2), 268-275. https://doi.org/10.1249/01.mss.0000183875.86476.bd DOI: https://doi.org/10.1249/01.mss.0000183875.86476.bd

Koopman, R., Wagenmakers, A. J., Manders, R. J., Zorenc, A. H., Senden, J. M., Gorselink, M., ... & van Loon, L. J. (2005). Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. American Journal of Physiology-Endocrinology and Metabolism, 288(4), E645-E653. https://doi.org/10.1152/ajpendo.00413.2004 DOI: https://doi.org/10.1152/ajpendo.00413.2004

Koopman, R., Crombach, N., Gijsen, A. P., Walrand, S., Fauquant, J., Kies, A. K., ... & van Loon, L. J. (2009). Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. The American Journal of Clinical Nutrition, 90(1), 106-115. https://doi.org/10.3945/ajcn.2009.27474 DOI: https://doi.org/10.3945/ajcn.2009.27474

Manninen, A. H. (2004). Protein hydrolysates in sports and exercise: a brief review. Journal of Sports Science & Medicine, 3(2), 60. https://doi.org/10.1186/1743-7075-6-38 DOI: https://doi.org/10.1186/1743-7075-6-38

Miller, S. L., Tipton, K. D., Chinkes, D. L., Wolf, S. E., & Wolfe, R. R. (2003). Independent and combined effects of amino acids and glucose after resistance exercise. Medicine and Science in Sports and Exercise, 35(3), 449-455. https://doi.org/10.1249/01.MSS.0000053910.63105.45 DOI: https://doi.org/10.1249/01.MSS.0000053910.63105.45

Nuttall, F. Q., Mooradian, A. D., Gannon, M. C., Billington, C., & Krezowski, P. (1984). Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care, 7(5), 465-470. https://doi.org/10.2337/diacare.7.5.465 DOI: https://doi.org/10.2337/diacare.7.5.465

Ohneda, A., Parada, E., Eisentraut, A. M., & Unger, R. H. (1968). Characterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids. The Journal of Clinical Investigation, 47(10), 2305-2322. https://doi.org/10.1172/JCI105916 DOI: https://doi.org/10.1172/JCI105916

Potier, M., & Tomé, D. (2008). Comparison of digestibility and quality of intact proteins with their respective hydrolysates. Journal of AOAC International, 91(4), 1002-1006. https://doi.org/10.1093/jaoac/91.4.1002 DOI: https://doi.org/10.1093/jaoac/91.4.1002

Rahbek, S. K., Farup, J., Møller, A. B., Vendelbo, M. H., Holm, L., Jessen, N., & Vissing, K. (2014). Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids, 46(10), 2377-2392. https://doi.org/10.1007/s00726-014-1792-1 DOI: https://doi.org/10.1007/s00726-014-1792-1

Rohatgi, A. (2020). WebplotDigitizer 4.6. Author. Retrieved from: https://automeris.io/WebPlotDigitizer

Rustad, P. I., Sailer, M., Cumming, K. T., Jeppesen, P. B., Kolnes, K. J., Sollie, O., ... & Jensen, J. (2016). Intake of protein plus carbohydrate during the first two hours after exhaustive cycling improves performance the following day. PloS One, 11(4), e0153229. https://doi.org/10.1371/journal.pone.0153229 DOI: https://doi.org/10.1371/journal.pone.0153229

Sollie, O., Jeppesen, P. B., Tangen, D. S., Jernerén, F., Nellemann, B., Valsdottir, D., ... & Jensen, J. (2018). Protein intake in the early recovery period after exhaustive exercise improves performance the following day. Journal of Applied Physiology, 2018 125(6), 1731-1742. https://doi.org/10.1152/japplphysiol.01132.2017 DOI: https://doi.org/10.1152/japplphysiol.01132.2017

Unger, R. H., Ohneda, A., Aguilar-Parada, E., & Eisentraut, A. M. (1969). The role of aminogenic glucagon secretion in blood glucose homeostasis. The Journal of Clinical Investigation, 48(5), 810-822. https://doi.org/10.1172/JCI106039 DOI: https://doi.org/10.1172/JCI106039

van Hall, G., Saris, W. H. M., Van de Schoor, P. A. I., & Wagenmakers, A. (2000a). The effect of free glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man. International Journal of Sports Medicine, 21(01), 25-30. https://doi.org/10.1055/s-2000-10688 DOI: https://doi.org/10.1055/s-2000-10688

van Hall, G., Shirreffs, S. M., & Calbet, J. A. (2000b). Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. Journal of Applied Physiology, 88(5), 1631-1636. https://doi.org/10.1152/jappl.2000.88.5.1631 DOI: https://doi.org/10.1152/jappl.2000.88.5.1631

Van Loon, L. J., Kruijshoop, M., Verhagen, H., Saris, W. H., & Wagenmakers, A. J. (2000a). Ingestion of protein hydrolysate and amino acid-carbohydrate mixtures increase postexercise plasma insulin responses in men. The Journal of Nutrition, 130(10), 2508-2513. https://doi.org/10.1093/jn/130.10.2508 DOI: https://doi.org/10.1093/jn/130.10.2508

Van Loon, L. J., Saris, W. H., Kruijshoop, M., & Wagenmakers, A. J. (2000b). Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. The American Journal of Clinical Nutrition, 72(1), 106-111. https://doi.org/10.1093/ajcn/72.1.106 DOI: https://doi.org/10.1093/ajcn/72.1.106

Wewer Albrechtsen, N. J., Veedfald, S., Plamboeck, A., Deacon, C. F., Hartmann, B., Knop, F. K., ... & Holst, J. J. (2016). Inability of some commercial assays to measure suppression of glucagon secretion. Journal of Diabetes Research. https://doi.org/10.1155/2016/8352957 DOI: https://doi.org/10.1155/2016/8352957

Yehia Bagato, A., & Samy Mahmoud, M. (2014). Post Exercise Glycogenin Activity Related to Ingestion of Carbohydrates and Protein Mixture through Gymnastics Training Program. Journal of Applied Sports Science, 4(1), 211-221. https://doi.org/10.21608/jass.2014.84816 DOI: https://doi.org/10.21608/jass.2014.84816

Zawadzki, K. M., Yaspelkis 3rd, B. B., & Ivy, J. L. (1992). Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. Journal of Applied Physiology, 72(5), 1854-1859. https://doi.org/10.1152/jappl.1992.72.5.1854 DOI: https://doi.org/10.1152/jappl.1992.72.5.1854