The effect of sensor position shifts on tensiomyographic parameters
Main Article Content
Abstract
Tensiomyography (TMG) is a non-invasive method to determine contractile parameters of skeletal muscles. Several methodological factors, however, might affect TMG results. The aim of this study was to investigate the effect of specific sensor position shifts on tensiomyographic parameters. 14 healthy males (age: 22.6 ± 1.2 years) participated in the study. TMG measurements were performed for rectus femoris (RF), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) on five sensor positions. The original sensor position (OP) was the recommended position on the muscle belly while for the shifted positions, the sensor was displaced one centimetre medially, laterally, proximally, and distally. TMG parameters measured were maximum radial displacement (Dm) and contraction time (Tc). To investigate the effect of sensor position shift, repeated-measures ANOVAs were performed. The ANOVAs revealed significant differences across the five sensor positions for RF and GM. Posthoc analysis showed significant reductions in Dm by 10 % (p = .03) and in Tc by 12 % (p = .008) in the laterally shifted sensor position for RF. For GM, Dm was significantly reduced by 20 % (p = .038) in the medially displaced sensor position. The results suggest that incorrect sensor positioning has an impact on TMG parameters, especially when incorrectly positioned in the medial-lateral direction.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Alvarez-Diaz, P., Alentorn-Geli, E., Ramon, S., Marin, M., Steinbacher, G., Rius, M., Seijas, R., Ballester, J., & Cugat, R. (2015). Effects of anterior cruciate ligament reconstruction on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surgery, Sports Traumatology, Arthroscopy : Official Journal of the ESSKA, 23(11), 3407–3413. https://doi.org/10.1007/s00167-014-3165-4 DOI: https://doi.org/10.1007/s00167-014-3165-4
Dahmane, R., Valen i, V., Knez, N., & Er en, I. (2001). Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Medical & Biological Engineering & Computing, 39(1), 51–55. https://doi.org/10.1007/bf02345266 DOI: https://doi.org/10.1007/BF02345266
Ditroilo, M., Hunter, A. M., Haslam, S., & Vito, G. de (2011). The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiological Measurement, 32(8), 1315–1326. https://doi.org/10.1088/0967-3334/32/8/020 DOI: https://doi.org/10.1088/0967-3334/32/8/020
García-García, O., Serrano-Gómez, V., Hernández-Mendo, A., & Morales-Sánchez, V. (2017). Baseline Mechanical and Neuromuscular Profile of Knee Extensor and Flexor Muscles in Professional Soccer Players at the Start of the Pre-Season. Journal of Human Kinetics, 58, 23–34. https://doi.org/10.1515/hukin-2017-0066 DOI: https://doi.org/10.1515/hukin-2017-0066
García-Manso, J. M., Rodríguez-Ruiz, D., Rodríguez-Matoso, D., Saa, Y. de, Sarmiento, S., & Quiroga, M. (2011). Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). Journal of Sports Sciences, 29(6), 619–625. https://doi.org/10.1080/02640414.2010.548822 DOI: https://doi.org/10.1080/02640414.2010.548822
Hanney, W. J., Kolber, M. J., Salamh, P. A., Moise, S., Hampton, D., & Wilson, A. T. (2021). The Reliability of Tensiomyography for Assessment of Muscle Function in the Healthy Population. Strength & Conditioning Journal, Publish Ahead of Print. https://doi.org/10.1519/ssc.0000000000000699 DOI: https://doi.org/10.1519/SSC.0000000000000699
Hunter, A. M., Galloway, S. D. R., Smith, I. J., Tallent, J., Ditroilo, M., Fairweather, M. M., & Howatson, G. (2012). Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 22(3), 334–341. https://doi.org/10.1016/j.jelekin.2012.01.009 DOI: https://doi.org/10.1016/j.jelekin.2012.01.009
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 DOI: https://doi.org/10.1016/j.jcm.2016.02.012
Krizaj, D., Simunic, B., & Zagar, T. (2008). Short-term repeatability of parameters extracted from radial displacement of muscle belly. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 18(4), 645–651. https://doi.org/10.1016/j.jelekin.2007.01.008 DOI: https://doi.org/10.1016/j.jelekin.2007.01.008
Lohr, C [C.], Schmidt, T [T.], Medina-Porqueres, I., Braumann, K.‑M [K-M], Reer, R [R.], & Porthun, J. (2019). Diagnostic accuracy, validity, and reliability of Tensiomyography to assess muscle function and exercise-induced fatigue in healthy participants. A systematic review with meta-analysis. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 47, 65–87. https://doi.org/10.1016/j.jelekin.2019.05.005 DOI: https://doi.org/10.1016/j.jelekin.2019.05.005
Lohr, C [Christine], Braumann, K.‑M [Klaus-Michael], Reer, R [Ruediger], Schroeder, J., & Schmidt, T [Tobias] (2018). Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. European Journal of Applied Physiology, 118(7), 1349–1359. https://doi.org/10.1007/s00421-018-3867-2 DOI: https://doi.org/10.1007/s00421-018-3867-2
Loturco, I., Pereira, L. A., Kobal, R., Kitamura, K., Ramírez-Campillo, R., Zanetti, V., Abad, C. C. C., & Nakamura, F. Y. (2016). Muscle Contraction Velocity: A Suitable Approach to Analyze the Functional Adaptations in Elite Soccer Players. Journal of Sports Science & Medicine, 15(3), 483–491.
Macgregor, L. J., Ditroilo, M., Smith, I. J., Fairweather, M. M., & Hunter, A. M. (2016). Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue. Journal of Sport Rehabilitation, 25(3), 241–247. https://doi.org/10.1123/jsr.2014-0325 DOI: https://doi.org/10.1123/jsr.2014-0325
Macgregor, L. J., Hunter, A. M., Orizio, C., Fairweather, M. M., & Ditroilo, M. (2018). Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography. Sports Medicine (Auckland, N.Z.), 48(7), 1607–1620. https://doi.org/10.1007/s40279-018-0912-6 DOI: https://doi.org/10.1007/s40279-018-0912-6
Martín-Rodríguez, S., Loturco, I., Hunter, A. M., Rodríguez-Ruiz, D., & Munguia-Izquierdo, D. (2017). Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review. Journal of Strength and Conditioning Research, 31(12), 3524–3536. https://doi.org/10.1519/jsc.0000000000002250 DOI: https://doi.org/10.1519/JSC.0000000000002250
Paravlić, A., Zubac, D., & Šimunič, B. (2017). Reliability of the twitch evoked skeletal muscle electromechanical efficiency: A ratio between tensiomyogram and M-wave amplitudes. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 37, 108–116. https://doi.org/10.1016/j.jelekin.2017.10.002 DOI: https://doi.org/10.1016/j.jelekin.2017.10.002
Paula Simola, R. Á. de [Rauno Á.], Harms, N., Raeder, C., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2015). Assessment of neuromuscular function after different strength training protocols using tensiomyography. Journal of Strength and Conditioning Research, 29(5), 1339–1348. https://doi.org/10.1519/jsc.0000000000000768 DOI: https://doi.org/10.1519/JSC.0000000000000768
Paula Simola, R. Á. de [Rauno Álvaro], Harms, N., Raeder, C., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2015). Tensiomyography reliability and prediction of changes in muscle force following heavy eccentric strength exercise using muscle mechanical properties. Sports Technology, 8(1-2), 58–66. https://doi.org/10.1080/19346182.2015.1117475 DOI: https://doi.org/10.1080/19346182.2015.1117475
Perotto, A., & Delagi, E. F. (2011). Anatomical guide for the electromyographer: The limbs and trunk (5th ed.). Charles C. Thomas.
Piqueras-Sanchiz, F., Martín-Rodríguez, S., Pareja-Blanco, F., Baraja-Vegas, L., Blázquez-Fernández, J., Bautista, I. J., & García-García, Ó. (2020). Mechanomyographic Measures of Muscle Contractile Properties are Influenced by Electrode Size and Stimulation Pulse Duration. Scientific Reports, 10(1), 8192. https://doi.org/10.1038/s41598-020-65111-z DOI: https://doi.org/10.1038/s41598-020-65111-z
Pisot, R., Narici, M. V., Simunic, B., Boer, M. de, Seynnes, O., Jurdana, M., Biolo, G., & Mekjavić, I. B. (2008). Whole muscle contractile parameters and thickness loss during 35-day bed rest. European Journal of Applied Physiology, 104(2), 409–414. https://doi.org/10.1007/s00421-008-0698-6 DOI: https://doi.org/10.1007/s00421-008-0698-6
Rodríguez-Matoso, D., Rodríguez-Ruiz, D., Sarmiento, S., Vaamonde, D., Da Silva-Grigoletto, M. E., & García-Manso, J. M. (2010). Reproducibility of muscle response measurements using tensiomyography in a range of positions. Revista Andaluza De Medicina Del Deporte, 3, 81–85. https://www.redalyc.org/pdf/3233/323327663001.pdf
Rojas-Valverde, D., Sánchez-Ureña, B., Gómez-Carmona, C. D., Ugalde-Ramírez, A., Trejos-Montoya, A., Pino-Ortega, J., & Gutiérrez-Vargas, R. (2021). Detection of neuromechanical acute fatigue-related responses during a duathlon simulation: Is tensiomyography sensitive enough? Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 235(1), 53–61. https://doi.org/10.1177/1754337120959736 DOI: https://doi.org/10.1177/1754337120959736
Santos, R., Valamatos, M. J., Mil-Homens, P., & Armada-da-Silva, P. A. S. (2018). Muscle thickness and echo-intensity changes of the quadriceps femoris muscle during a strength training program. Radiography (London, England : 1995), 24(4), e75-e84. https://doi.org/10.1016/j.radi.2018.03.010 DOI: https://doi.org/10.1016/j.radi.2018.03.010
Simunič, B. (2012). Between-day reliability of a method for non-invasive estimation of muscle composition. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 22(4), 527–530. https://doi.org/10.1016/j.jelekin.2012.04.003 DOI: https://doi.org/10.1016/j.jelekin.2012.04.003
Tous-Fajardo, J., Moras, G., Rodríguez-Jiménez, S., Usach, R., Doutres, D. M., & Maffiuletti, N. A. (2010). Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 20(4), 761–766. https://doi.org/10.1016/j.jelekin.2010.02.008 DOI: https://doi.org/10.1016/j.jelekin.2010.02.008
Valencic, V., & Knez, N. (1997). Measuring of skeletal muscles' dynamic properties. Artificial Organs, 21(3), 240–242. https://doi.org/10.1111/j.1525-1594.1997.tb04658.x DOI: https://doi.org/10.1111/j.1525-1594.1997.tb04658.x
van Melick, N., Meddeler, B. M., Hoogeboom, T. J., Nijhuis-van der Sanden, M. W. G., & van Cingel, R. E. H. (2017). How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PloS One, 12(12), e0189876. https://doi.org/10.1371/journal.pone.0189876 DOI: https://doi.org/10.1371/journal.pone.0189876
Wilson, H. V., Johnson, M. I., & Francis, P. (2018). Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography. PloS One, 13(2), e0191965. https://doi.org/10.1371/journal.pone.0191965 DOI: https://doi.org/10.1371/journal.pone.0191965