Habits of Spanish and European athletes on altitude training Do all methods work equally well?
Main Article Content
Abstract
Objective: The training context of athletes from different locations can affect their altitude training camps. The aim of this study was to compare the habits of Spanish and European athletes during high altitude training camps. Methods: Descriptive analysis using questionnaires was conducted to investigate the altitude training practices of elite European athletes (n = 28) compared with Spanish athletes (n = 35). Moreover, all variables were assessed with an analysis of variance (ANOVA). Results: The most commonly method used by athletes was Live High - Train High (LHTH) . Most Spanish athletes train at altitudes above 2000m, while European athletes train at 1800m. The European athletes group usually compete 2-3 days after the camp, while the most Spanish athletes compete 3 weeks after the camp. In both groups, the feeling of improved performance after the camp was similar. Spanish athletes had higher feeling of fatigue and more sleep problems than European athletes during the training camp (p < .005) while the Europeans have a better feeling at the end of the camp. Conclusion: Spanish athletes had similar habits to those of athletes from the rest of Europe. The main differences between groups were that the feeling of fatigue at the end of the altitude periods and the sleep problems during the camp. These subjective feelings during the training camp may affect the fact that Spanish athletes preferred to compete up to three weeks after the camp while European athletes preferred to compete in the first 2-3 days after the camp.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ashenden, M. J., Hahn, A. G., Martin, D. T., Logan, P., Parisotto, R., & Gore, C. J. (2001). A comparison of the physiological response to simulated altitude exposure and r-HuEpo administration. Journal of Sports Sciences, 19(11), 831-837. https://doi.org/10.1080/026404101753113778 DOI: https://doi.org/10.1080/026404101753113778
Birkeland, K. I., Stray-Gundersen, J., Hemmersbach, P., Hallen, J., Haug, E., & Bahr, R. (2000). Effect of rhEPO administration on serum levels of sTfR and cycling performance. Medicine and Science in Sports and Exercise, 32(7), 1238-1243. https://doi.org/10.1097/00005768-200007000-00009 DOI: https://doi.org/10.1097/00005768-200007000-00009
Bloch, K. E., Buenzli, J. C., Latshang, T. D., & Ulrich, S. (2015). Sleep at high altitude: Guesses and facts. Journal of Applied Physiology, 119(12), 1466-1480. https://doi.org/10.1152/japplphysiol.00448.2015 DOI: https://doi.org/10.1152/japplphysiol.00448.2015
Brocherie, F., Millet, G. P., Hauser, A., Steiner, T., Rysman, J., Wehrlin, J. P., & Girard, O. (2015). «Live High-Train Low and High» Hypoxic Training Improves Team-Sport Performance. Medicine and Science in Sports and Exercise, 47(10), 2140-2149. https://doi.org/10.1249/MSS.0000000000000630 DOI: https://doi.org/10.1249/MSS.0000000000000630
Brugniaux, J. V., Schmitt, L., Robach, P., Nicolet, G., Fouillot, J.-P., Moutereau, S., Lasne, F., Pialoux, V., Saas, P., Chorvot, M.-C., Cornolo, J., Olsen, N. V., & Richalet, J.-P. (2006). Eighteen days of «living high, training low» stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. Journal of Applied Physiology (Bethesda, Md.: 1985), 100(1), 203-211. https://doi.org/10.1152/japplphysiol.00808.2005 DOI: https://doi.org/10.1152/japplphysiol.00808.2005
Caris, A. V., & Santos, R. V. T. (2019). Performance and altitude: Ways that nutrition can help. Nutrition (Burbank, Los Angeles County, Calif.), 60, 35-40. https://doi.org/10.1016/j.nut.2018.09.030 DOI: https://doi.org/10.1016/j.nut.2018.09.030
Chapman R. F. (2013). The individual response to training and competition at altitude. British journal of sports medicine, 47 Suppl 1(Suppl 1), i40–i44. https://doi.org/10.1136/bjsports-2013-092837 DOI: https://doi.org/10.1136/bjsports-2013-092837
Chapman, R. F., Karlsen, T., Resaland, G. K., Ge, R.-L., Harber, M. P., Witkowski, S., Stray-Gundersen, J., & Levine, B. D. (2014). Defining the "dose" of altitude training: How high to live for optimal sea level performance enhancement. Journal of Applied Physiology, 116(6), 595-603. https://doi.org/10.1152/japplphysiol.00634.2013 DOI: https://doi.org/10.1152/japplphysiol.00634.2013
Chapman, R. F., Laymon Stickford, A. S., Lundby, C., & Levine, B. D. (2014). Timing of return from altitude training for optimal sea level performance. Journal of Applied Physiology (Bethesda, Md.: 1985), 116(7), 837-843. https://doi.org/10.1152/japplphysiol.00663.2013 DOI: https://doi.org/10.1152/japplphysiol.00663.2013
Daniels, J., & Oldridge, N. (1970). The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Medicine and Science in Sports, 2(3), 107-112. https://doi.org/10.1249/00005768-197023000-00001 DOI: https://doi.org/10.1249/00005768-197023000-00001
Facco, M., Zilli, C., Siviero, M., Ermolao, A., Travain, G., Baesso, I., Bonamico, S., Cabrelle, A., Zaccaria, M., & Agostini, C. (2005). Modulation of Immune Response by the Acute and Chronic Exposure to High Altitude. Medicine & Science in Sports & Exercise, 37(5), 768. https://doi.org/10.1249/01.MSS.0000162688.54089.CE DOI: https://doi.org/10.1249/01.MSS.0000162688.54089.CE
Garvican, L., Martin, D., Quod, M., Stephens, B., Sassi, A., & Gore, C. (2012). Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scandinavian Journal of Medicine & Science in Sports, 22(1), 95-103. https://doi.org/10.1111/j.1600-0838.2010.01145.x DOI: https://doi.org/10.1111/j.1600-0838.2010.01145.x
Garvican-Lewis, L. A., Govus, A. D., Peeling, P., Abbiss, C. R., & Gore, C. J. (2016). Iron Supplementation and Altitude: Decision Making Using a Regression Tree. Journal of Sports Science & Medicine, 15(1), 204-205.
Girard, O., Levine, B. D., Chapman, R. F., & Wilber, R. (2023). «Living High-Training Low» for Olympic Medal Performance: What Have We Learned 25 Years After Implementation? International Journal of Sports Physiology and Performance, 1-10. https://doi.org/10.1123/ijspp.2022-0501 DOI: https://doi.org/10.1123/ijspp.2022-0501
Gore, C. J., Clark, S. A., & Saunders, P. U. (2007). Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Medicine and Science in Sports and Exercise, 39(9), 1600-1609. https://doi.org/10.1249/mss.0b013e3180de49d3 DOI: https://doi.org/10.1249/mss.0b013e3180de49d3
Hauser, A., Troesch, S., Saugy, J. J., Schmitt, L., Cejuela-Anta, R., Faiss, R., Steiner, T., Robinson, N., Millet, G. P., & Wehrlin, J. P. (2017). Individual hemoglobin mass response to normobaric and hypobaric «live high-train low»: A one-year crossover study. Journal of Applied Physiology (Bethesda, Md.: 1985), 123(2), 387-393. https://doi.org/10.1152/japplphysiol.00932.2016 DOI: https://doi.org/10.1152/japplphysiol.00932.2016
Hooper, S. L., & Mackinnon, L. T. (1995). Monitoring overtraining in athletes. Recommendations. Sports Medicine (Auckland, N.Z.), 20(5), 321-327. https://doi.org/10.2165/00007256-199520050-00003 DOI: https://doi.org/10.2165/00007256-199520050-00003
Levine, B. D. (2002). Intermittent hypoxic training: Fact and fancy. High Altitude Medicine & Biology, 3(2), 177-193. https://doi.org/10.1089/15270290260131911 DOI: https://doi.org/10.1089/15270290260131911
Levine, B. D., & Stray-Gundersen, J. (1992). A practical approach to altitude training: Where to live and train for optimal performance enhancement. International Journal of Sports Medicine, 13 Suppl 1, S209-212. https://doi.org/10.1055/s-2007-1024642 DOI: https://doi.org/10.1055/s-2007-1024642
Levine, B. D., & Stray-Gundersen, J. (1997). «Living high-training low»: Effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology (Bethesda, Md.: 1985), 83(1), 102-112. https://doi.org/10.1152/jappl.1997.83.1.102 DOI: https://doi.org/10.1152/jappl.1997.83.1.102
López Calbet JA. (2006). Entrenamiento en altura e hipóxia intermitente. Encuentro sobre Alto Rendimiento Deportivo, Málaga.
Madaria, Z. (2019, mayo 21). Altitud e hipoxia hipobárica. ¿Que son y como se clasifican? ZigorMadaria. Retrieved from [Accessed 2026, 11 February]: https://zigormadaria.com/altitud-e-hipoxia-hipobarica-que-son-y-como-se-clasifican/
McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2021). Defining Training and Performance Caliber: A Participant Classification Framework. International Journal of Sports Physiology and Performance, 17(2), 317-331. https://doi.org/10.1123/ijspp.2021-0451 DOI: https://doi.org/10.1123/ijspp.2021-0451
Michalczyk, M., Czuba, M., Zydek, G., Zając, A., & Langfort, J. (2016). Dietary Recommendations for Cyclists during Altitude Training. Nutrients, 8(6), 377. https://doi.org/10.3390/nu8060377 DOI: https://doi.org/10.3390/nu8060377
Millet, G. P., Roels, B., Schmitt, L., Woorons, X., & Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Medicine (Auckland, N.Z.), 40(1), 1-25. https://doi.org/10.2165/11317920-000000000-00000 DOI: https://doi.org/10.2165/11317920-000000000-00000
Mujika, I., Sharma, A. P., & Stellingwerff, T. (2019). Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Sports Medicine (Auckland, N.Z.), 49(11), 1651-1669. https://doi.org/10.1007/s40279-019-01165-y DOI: https://doi.org/10.1007/s40279-019-01165-y
Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. The Journal of Experimental Biology, 204(Pt 18), 3225-3234. https://doi.org/10.1242/jeb.204.18.3225 DOI: https://doi.org/10.1242/jeb.204.18.3225
Park, H.-Y., Kim, S., & Nam, S.-S. (2017). Four-week «living high training low» program enhances 3000-m and 5000-m time trials by improving energy metabolism during submaximal exercise in athletes. Journal of Exercise Nutrition & Biochemistry, 21(1), 1-6. https://doi.org/10.20463/jenb.2017.0060 DOI: https://doi.org/10.20463/jenb.2017.0060
Park, H.-Y., & Nam, S.-S. (2017). Application of "living high-training low" enhances cardiac function and skeletal muscle oxygenation during submaximal exercises in athletes. Journal of Exercise Nutrition & Biochemistry, 21(1), 13-20. https://doi.org/10.20463/jenb.2017.0064 DOI: https://doi.org/10.20463/jenb.2017.0064
Pugh, L. G. (1967). Athletes at altitude. The Journal of Physiology, 192(3), 619-646. https://doi.org/10.1113/jphysiol.1967.sp008321 DOI: https://doi.org/10.1113/jphysiol.1967.sp008321
RF Chapman, Stray-Gundersen, & BD Levine. (1985). Individual variation in response to altitude training | Journal of Applied Physiology. https://doi.org/10.1152/jappl.1998.85.4.1448 DOI: https://doi.org/10.1152/jappl.1998.85.4.1448
Robertson, E., Saunders, P., Pyne, D., Gore, C., & Anson, J. (2010). Effectiveness of intermittent training in hypoxia combined with live high/train low. https://doi.org/10.1007/s00421-010-1516-5 DOI: https://doi.org/10.1007/s00421-010-1516-5
Sargent, C., Schmidt, W. F., Aughey, R. J., Bourdon, P. C., Soria, R., Claros, J. C. J., Garvican-Lewis, L. A., Buchheit, M., Simpson, B. M., Hammond, K., Kley, M., Wachsmuth, N., Gore, C. J., & Roach, G. D. (2013). The impact of altitude on the sleep of young elite soccer players (ISA3600). British Journal of Sports Medicine, 47(Suppl 1), i86-i92. https://doi.org/10.1136/bjsports-2013-092829 DOI: https://doi.org/10.1136/bjsports-2013-092829
Sasaki, R., Masuda, S., & Nagao, M. (2000). Erythropoietin: Multiple physiological functions and regulation of biosynthesis. Bioscience, Biotechnology, and Biochemistry, 64(9), 1775-1793. https://doi.org/10.1271/bbb.64.1775 DOI: https://doi.org/10.1271/bbb.64.1775
Saunders, P. U., Pyne, D. B., & Gore, C. J. (2009). Endurance training at altitude. High Altitude Medicine & Biology, 10(2), 135-148. https://doi.org/10.1089/ham.2008.1092 DOI: https://doi.org/10.1089/ham.2008.1092
Saunders, Pyne, D. D., Gore, C. J., Hahn, A. G., & Telford. (2009). Improved race performance in elite middle-distance runners after cumulative altitude exposure. International Journal of Sports Physiology and Performance, 4(1), 134-138. https://doi.org/10.1123/ijspp.4.1.134 DOI: https://doi.org/10.1123/ijspp.4.1.134
Semenza, G. L. (2004). O2-regulated gene expression: Transcriptional control of cardiorespiratory physiology by HIF-1. Journal of Applied Physiology (Bethesda, Md.: 1985), 96(3), 1173-1177; discussion 1170-1172. https://doi.org/10.1152/japplphysiol.00770.2003 DOI: https://doi.org/10.1152/japplphysiol.00770.2003
Sinex, J. A., & Chapman, R. F. (2015). Hypoxic training methods for improving endurance exercise performance. Journal of Sport and Health Science, 4(4), 325-332. https://doi.org/10.1016/j.jshs.2015.07.005 DOI: https://doi.org/10.1016/j.jshs.2015.07.005
Stellingwerff, T., Peeling, P., Garvican-Lewis, L. A., Hall, R., Koivisto, A. E., Heikura, I. A., & Burke, L. M. (2019). Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Medicine, 49(2), 169-184. https://doi.org/10.1007/s40279-019-01159-w DOI: https://doi.org/10.1007/s40279-019-01159-w
Stray-Gundersen, J., Chapman, R. F., & Levine, B. D. (2001). «Living high-training low» altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology (Bethesda, Md.: 1985), 91(3), 1113-1120. https://doi.org/10.1152/jappl.2001.91.3.1113 DOI: https://doi.org/10.1152/jappl.2001.91.3.1113
Subiela, J. V. (2014). Mitos y realidades del entrenamiento en altura (Revisión). Vitae: Academia Biomédica Digital, 57 (Enero-Marzo), 2.
Vitale, J. A., Ieno, C., Baldassarre, R., Bonifazi, M., Vitali, F., La Torre, A., & Piacentini, M. F. (2022). The Impact of a 14-Day Altitude Training Camp on Olympic-Level Open-Water Swimmers' Sleep. International Journal of Environmental Research and Public Health, 19(7), 4253. https://doi.org/10.3390/ijerph19074253 DOI: https://doi.org/10.3390/ijerph19074253
Walsh, N.P. and Oliver, S.J. (2016), Exercise, immune function and respiratory infection: An update on the influence of training and environmental stress. Immunol Cell Biol, 94: 132-139. https://doi.org/10.1038/icb.2015.99 DOI: https://doi.org/10.1038/icb.2015.99
Wehrlin, J. P., Zuest, P., Hallén, J., & Marti, B. (2006). Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. Journal of Applied Physiology (Bethesda, Md.: 1985), 100(6), 1938-1945. https://doi.org/10.1152/japplphysiol.01284.2005 DOI: https://doi.org/10.1152/japplphysiol.01284.2005
Wilber, R. L. (2007). Application of altitude/hypoxic training by elite athletes. Medicine and Science in Sports and Exercise, 39(9), 1610-1624. https://doi.org/10.1249/mss.0b013e3180de49e6 DOI: https://doi.org/10.1249/mss.0b013e3180de49e6
Wilber, R. L., Stray-Gundersen, J., & Levine, B. D. (2007). Effect of Hypoxic «Dose» on Physiological Responses and Sea-Level Performance. Medicine & Science in Sports & Exercise, 39(9), 1590-1599. https://doi.org/10.1249/mss.0b013e3180de49bd DOI: https://doi.org/10.1249/mss.0b013e3180de49bd