Nonlinearity analysis of sit-to-stand and its application A mini-review

Main Article Content

Armin Hakkak Moghadam Torbati
Narges Davoudi


The examination of human biomechanics, particularly the sit-to-stand transition, has been a focal point of research for numerous years, utilizing mathematical models of the musculoskeletal structure and motion analysis. However, researchers and scientists have encountered substantial challenges attributable to the distributed, nonlinear, and time-varying nature of this phenomenon, characterized by numerous degrees of freedom and redundancy at various levels. Conventional biomechanical assessments of human movement typically rely on linear mathematical approaches, which, while advantageous in various scenarios, often inadequately capture the predominantly nonlinear characteristics inherent in human systems. As a consequence, there has been a growing recognition of the limitations of linear methods, leading to an increased adoption of nonlinear analytical techniques rooted in a dynamical systems approach in contemporary research. Notwithstanding this trend, there exists a conspicuous dearth of a comprehensive review paper that meticulously scrutinizes these nonlinear methods and their applications across the spectrum from modelling to rehabilitation. This mini-review aims to address this gap by highlighting recent advancements in nonlinear methodologies. These methodologies have demonstrated the potential to enhance the efficacy of interventions for individuals with sit-to-stand disorders, encompassing the design of intelligent rehabilitation devices, mitigating fall risks, and facilitating early patient classification.

Article Details

How to Cite
Torbati, A. H. M., & Davoudi, N. (2024). Nonlinearity analysis of sit-to-stand and its application: A mini-review. Scientific Journal of Sport and Performance, 3(2), 180–187.
Review Paper
Author Biographies

Armin Hakkak Moghadam Torbati, University of Naples "Federico II"

Department of Advanced Biomedical Sciences.

Narges Davoudi, University of Naples “Federico II”

Department of Physics.


Ahmed, M., M. Huq, B. Ibrahim, S. A. Jalo and G. Elhassan (2019). Evaluating the Linearized Feedback Controller for Regulation of Aided Sit-to-Stand in Subjects with Spinal Cord Injuries. 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), IEEE. DOI:

Ahmed, M., M. Huq, B. Ibrahim, N. M. Tahir, Z. Ahmed and G. Elhassan (2022). A Comparative Study on Nonlinear Control of Induced Sit-to-Stand in Paraplegia with Human Mass Variation. Recent Trends in Mechatronics Towards Industry 4.0: Selected Articles from iM3F 2020, Malaysia, Springer.

Bernardi, M., A. Rosponi, V. Castellano, A. Rodio, M. Traballesi, A. S. Delussu and M. Marchetti (2004). "Determinants of sit-to-stand capability in the motor impaired elderly." Journal of Electromyography and kinesiology 14(3): 401-410. DOI:

Capela, N. A., E. D. Lemaire and N. Baddour (2015). Improving classification of sit, stand, and lie in a smartphone human activity recognition system. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, IEEE. DOI:

Dall, P. M. and A. Kerr (2010). "Frequency of the sit to stand task: an observational study of free-living adults." Applied ergonomics 41(1): 58-61. DOI:

Dehail, P., E. Bestaven, F. Muller, A. Mallet, B. Robert, I. Bourdel-Marchasson and J. Petit (2007). "Kinematic and electromyographic analysis of rising from a chair during a "Sit-to-Walk" task in elderly subjects: role of strength." Clinical Biomechanics 22(10): 1096-1103. DOI:

Doulah, A., X. Shen and E. Sazonov (2016). "A method for early detection of the initiation of sit-to-stand posture transitions." Physiological measurement 37(4): 515. DOI:

Ejupi, A., M. Brodie, S. R. Lord, J. Annegarn, S. J. Redmond and K. Delbaere (2016). "Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device." IEEE Transactions on Biomedical Engineering 64(7): 1602-1607. DOI:

Fatmehsari, Y. R. and F. Bahrami (2011). Sit-to-stand or stand-to-sit: Which movement can classify better Parkinsonian patients from healthy elderly subjects? 2011 18th Iranian Conference of Biomedical Engineering (ICBME), IEEE. DOI:

Gibbons, C. T., P. G. Amazeen and J. J. Jondac (2019). "Thinking on your feet: An analysis of movement and cognition in a sit to stand task." Acta psychologica 192: 52-58. DOI:

Gross, M., P. Stevenson, S. Charette, G. Pyka and R. Marcus (1998). "Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women." Gait & posture 8(3): 175-185. DOI:

Heidari, B. (2011). "Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I." Caspian journal of internal medicine 2(2): 205.

Janssen, W. G., H. B. Bussmann and H. J. Stam (2002). "Determinants of the sit-to-stand movement: a review." Physical therapy 82(9): 866-879. DOI:

Kitagawa, K., I. Gorordo Fernandez, T. Nagasaki, S. Nakano, M. Hida, S. Okamatsu and C. Wada (2021). "Foot Position Measurement during Assistive Motion for Sit-to-Stand Using a Single Inertial Sensor and Shoe-Type Force Sensors." International Journal of Environmental Research and Public Health 18(19): 10481. DOI:

Li, J., L. Lu, L. Zhao, C. Wang and J. Li (2021). "An integrated approach for robotic Sit-To-Stand assistance: Control framework design and human intention recognition." Control Engineering Practice 107: 104680. DOI:

Lord, S. R., S. M. Murray, K. Chapman, B. Munro and A. Tiedemann (2002). "Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people." The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 57(8): M539-M543. DOI:

Matthis, J. S. and B. R. Fajen (2013). "Humans exploit the biomechanics of bipedal gait during visually guided walking over complex terrain." Proceedings of the Royal Society B: Biological Sciences 280(1762): 20130700. DOI:

Nasim, A., D. C. Nchekwube and Y. S. Kim (2021). "Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors." Electronics 10(19): 2438. DOI:

Nematollahi, M. H., S. A. Haghpanah and S. Taghvaei (2019). "Inverse Dynamic Robust Control of Sit-to-Stand Movement." Biomedical Engineering: Applications, Basis and Communications 31(06): 1950041. DOI:

Pozaic, T., U. Lindemann, A.-K. Grebe and W. Stork (2016). "Sit-to-stand transition reveals acute fall risk in activities of daily living." IEEE journal of translational engineering in health and medicine 4: 1-11. DOI:

Rafique, S., A. Mahmood and M. Najam-ul-Islam (2018). Robust control of physiologically relevant sit-to-stand motion using reduced order measurements. Proceedings of the Future Technologies Conference, Springer. DOI:

Rafique, S., M. Najam-l-Islam and A. Mahmood (2019). Synthesis of sit-to-stand movement using SimMechanics. International Conference on Smart Innovation, Ergonomics and Applied Human Factors, Springer. DOI:

Riley, P. O., M. L. Schenkman, R. W. Mann and W. A. Hodge (1991). "Mechanics of a constrained chair-rise." Journal of biomechanics 24(1): 77-85. DOI:

Rodosky, M. W., T. P. Andriacchi and G. B. Andersson (1989). "The influence of chair height on lower limb mechanics during rising." Journal of Orthopaedic Research 7(2): 266-271. DOI:

Sultan, N., A. M. Mughal, M. N. u. Islam and F. M. Malik (2021). "High-gain observer-based nonlinear control scheme for biomechanical sit to stand movement in the presence of sensory feedback delays." Plos one 16(8): e0256049. DOI:

Sultan, N., M. Najam-ul-Islam and A. Mahmood (2018). Nonlinear control synthesis of biomechanical sit to stand movement. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), IEEE. DOI:

Tarnita, D., A. Petcu, M. Georgescu, I. Geonea and D. Tarnita (2021). Nonlinear Dynamic Analysis of Human Sit-to-Stand Movement with Application to the Robotic Structures. New Trends in Medical and Service Robotics: MESROB 2020 7, Springer. DOI:

Torbati, A. H. M., S. Jami and H. R. Kobravi (2022). "Is the Hénon map able to predict the interaction dynamics between the knee and hip joints emerged during sit-to-stand movement?" Biomedical Physics & Engineering Express 8(4): 045003. DOI:

Yang, J. and B. Ozsoy (2020). "Three dimensional unassisted sit-to-stand prediction for virtual healthy young and elderly individuals." Multibody System Dynamics 49: 33-52. DOI:

Zinkovsky, A. V., V. A. Sholuha and A. A. Ivanov (1996). Mathematical modelling and computer simulation of biomechanical systems, World Scientific. DOI: