Nonlinearity analysis of sit-to-stand and its application A mini-review
Main Article Content
Abstract
The examination of human biomechanics, particularly the sit-to-stand transition, has been a focal point of research for numerous years, utilizing mathematical models of the musculoskeletal structure and motion analysis. However, researchers and scientists have encountered substantial challenges attributable to the distributed, nonlinear, and time-varying nature of this phenomenon, characterized by numerous degrees of freedom and redundancy at various levels. Conventional biomechanical assessments of human movement typically rely on linear mathematical approaches, which, while advantageous in various scenarios, often inadequately capture the predominantly nonlinear characteristics inherent in human systems. As a consequence, there has been a growing recognition of the limitations of linear methods, leading to an increased adoption of nonlinear analytical techniques rooted in a dynamical systems approach in contemporary research. Notwithstanding this trend, there exists a conspicuous dearth of a comprehensive review paper that meticulously scrutinizes these nonlinear methods and their applications across the spectrum from modelling to rehabilitation. This mini-review aims to address this gap by highlighting recent advancements in nonlinear methodologies. These methodologies have demonstrated the potential to enhance the efficacy of interventions for individuals with sit-to-stand disorders, encompassing the design of intelligent rehabilitation devices, mitigating fall risks, and facilitating early patient classification.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ahmed, M., M. Huq, B. Ibrahim, S. A. Jalo and G. Elhassan (2019). Evaluating the Linearized Feedback Controller for Regulation of Aided Sit-to-Stand in Subjects with Spinal Cord Injuries. 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), IEEE. https://doi.org/10.1109/ICSPC47137.2019.9068085 DOI: https://doi.org/10.1109/ICSPC47137.2019.9068085
Ahmed, M., M. Huq, B. Ibrahim, N. M. Tahir, Z. Ahmed and G. Elhassan (2022). A Comparative Study on Nonlinear Control of Induced Sit-to-Stand in Paraplegia with Human Mass Variation. Recent Trends in Mechatronics Towards Industry 4.0: Selected Articles from iM3F 2020, Malaysia, Springer.
Bernardi, M., A. Rosponi, V. Castellano, A. Rodio, M. Traballesi, A. S. Delussu and M. Marchetti (2004). "Determinants of sit-to-stand capability in the motor impaired elderly." Journal of Electromyography and kinesiology 14(3): 401-410. https://doi.org/10.1016/j.jelekin.2003.09.001 DOI: https://doi.org/10.1016/j.jelekin.2003.09.001
Capela, N. A., E. D. Lemaire and N. Baddour (2015). Improving classification of sit, stand, and lie in a smartphone human activity recognition system. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, IEEE. https://doi.org/10.1109/MeMeA.2015.7145250 DOI: https://doi.org/10.1109/MeMeA.2015.7145250
Dall, P. M. and A. Kerr (2010). "Frequency of the sit to stand task: an observational study of free-living adults." Applied ergonomics 41(1): 58-61. https://doi.org/10.1016/j.apergo.2009.04.005 DOI: https://doi.org/10.1016/j.apergo.2009.04.005
Dehail, P., E. Bestaven, F. Muller, A. Mallet, B. Robert, I. Bourdel-Marchasson and J. Petit (2007). "Kinematic and electromyographic analysis of rising from a chair during a "Sit-to-Walk" task in elderly subjects: role of strength." Clinical Biomechanics 22(10): 1096-1103. https://doi.org/10.1016/j.clinbiomech.2007.07.015 DOI: https://doi.org/10.1016/j.clinbiomech.2007.07.015
Doulah, A., X. Shen and E. Sazonov (2016). "A method for early detection of the initiation of sit-to-stand posture transitions." Physiological measurement 37(4): 515. https://doi.org/10.1088/0967-3334/37/4/515 DOI: https://doi.org/10.1088/0967-3334/37/4/515
Ejupi, A., M. Brodie, S. R. Lord, J. Annegarn, S. J. Redmond and K. Delbaere (2016). "Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device." IEEE Transactions on Biomedical Engineering 64(7): 1602-1607. https://doi.org/10.1109/TBME.2016.2614230 DOI: https://doi.org/10.1109/TBME.2016.2614230
Fatmehsari, Y. R. and F. Bahrami (2011). Sit-to-stand or stand-to-sit: Which movement can classify better Parkinsonian patients from healthy elderly subjects? 2011 18th Iranian Conference of Biomedical Engineering (ICBME), IEEE. https://doi.org/10.1109/ICBME.2011.6168583 DOI: https://doi.org/10.1109/ICBME.2011.6168583
Gibbons, C. T., P. G. Amazeen and J. J. Jondac (2019). "Thinking on your feet: An analysis of movement and cognition in a sit to stand task." Acta psychologica 192: 52-58. https://doi.org/10.1016/j.actpsy.2018.10.014 DOI: https://doi.org/10.1016/j.actpsy.2018.10.014
Gross, M., P. Stevenson, S. Charette, G. Pyka and R. Marcus (1998). "Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women." Gait & posture 8(3): 175-185. https://doi.org/10.1016/S0966-6362(98)00033-2 DOI: https://doi.org/10.1016/S0966-6362(98)00033-2
Heidari, B. (2011). "Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I." Caspian journal of internal medicine 2(2): 205.
Janssen, W. G., H. B. Bussmann and H. J. Stam (2002). "Determinants of the sit-to-stand movement: a review." Physical therapy 82(9): 866-879. https://doi.org/10.1093/ptj/82.9.866 DOI: https://doi.org/10.1093/ptj/82.9.866
Kitagawa, K., I. Gorordo Fernandez, T. Nagasaki, S. Nakano, M. Hida, S. Okamatsu and C. Wada (2021). "Foot Position Measurement during Assistive Motion for Sit-to-Stand Using a Single Inertial Sensor and Shoe-Type Force Sensors." International Journal of Environmental Research and Public Health 18(19): 10481. https://doi.org/10.3390/ijerph181910481 DOI: https://doi.org/10.3390/ijerph181910481
Li, J., L. Lu, L. Zhao, C. Wang and J. Li (2021). "An integrated approach for robotic Sit-To-Stand assistance: Control framework design and human intention recognition." Control Engineering Practice 107: 104680. https://doi.org/10.1016/j.conengprac.2020.104680 DOI: https://doi.org/10.1016/j.conengprac.2020.104680
Lord, S. R., S. M. Murray, K. Chapman, B. Munro and A. Tiedemann (2002). "Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people." The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 57(8): M539-M543. https://doi.org/10.1093/gerona/57.8.M539 DOI: https://doi.org/10.1093/gerona/57.8.M539
Matthis, J. S. and B. R. Fajen (2013). "Humans exploit the biomechanics of bipedal gait during visually guided walking over complex terrain." Proceedings of the Royal Society B: Biological Sciences 280(1762): 20130700. https://doi.org/10.1098/rspb.2013.0700 DOI: https://doi.org/10.1098/rspb.2013.0700
Nasim, A., D. C. Nchekwube and Y. S. Kim (2021). "Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors." Electronics 10(19): 2438. https://doi.org/10.3390/electronics10192438 DOI: https://doi.org/10.3390/electronics10192438
Nematollahi, M. H., S. A. Haghpanah and S. Taghvaei (2019). "Inverse Dynamic Robust Control of Sit-to-Stand Movement." Biomedical Engineering: Applications, Basis and Communications 31(06): 1950041. https://doi.org/10.4015/S1016237219500418 DOI: https://doi.org/10.4015/S1016237219500418
Pozaic, T., U. Lindemann, A.-K. Grebe and W. Stork (2016). "Sit-to-stand transition reveals acute fall risk in activities of daily living." IEEE journal of translational engineering in health and medicine 4: 1-11. https://doi.org/10.1109/JTEHM.2016.2620177 DOI: https://doi.org/10.1109/JTEHM.2016.2620177
Rafique, S., A. Mahmood and M. Najam-ul-Islam (2018). Robust control of physiologically relevant sit-to-stand motion using reduced order measurements. Proceedings of the Future Technologies Conference, Springer. https://doi.org/10.1007/978-3-030-02683-7_56 DOI: https://doi.org/10.1007/978-3-030-02683-7_56
Rafique, S., M. Najam-l-Islam and A. Mahmood (2019). Synthesis of sit-to-stand movement using SimMechanics. International Conference on Smart Innovation, Ergonomics and Applied Human Factors, Springer. https://doi.org/10.1007/978-3-030-22964-1_43 DOI: https://doi.org/10.1007/978-3-030-22964-1_43
Riley, P. O., M. L. Schenkman, R. W. Mann and W. A. Hodge (1991). "Mechanics of a constrained chair-rise." Journal of biomechanics 24(1): 77-85. https://doi.org/10.1016/0021-9290(91)90328-K DOI: https://doi.org/10.1016/0021-9290(91)90328-K
Rodosky, M. W., T. P. Andriacchi and G. B. Andersson (1989). "The influence of chair height on lower limb mechanics during rising." Journal of Orthopaedic Research 7(2): 266-271. https://doi.org/10.1002/jor.1100070215 DOI: https://doi.org/10.1002/jor.1100070215
Sultan, N., A. M. Mughal, M. N. u. Islam and F. M. Malik (2021). "High-gain observer-based nonlinear control scheme for biomechanical sit to stand movement in the presence of sensory feedback delays." Plos one 16(8): e0256049. https://doi.org/10.1371/journal.pone.0256049 DOI: https://doi.org/10.1371/journal.pone.0256049
Sultan, N., M. Najam-ul-Islam and A. Mahmood (2018). Nonlinear control synthesis of biomechanical sit to stand movement. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), IEEE. https://doi.org/10.1109/ICSTCC.2018.8540659 DOI: https://doi.org/10.1109/ICSTCC.2018.8540659
Tarnita, D., A. Petcu, M. Georgescu, I. Geonea and D. Tarnita (2021). Nonlinear Dynamic Analysis of Human Sit-to-Stand Movement with Application to the Robotic Structures. New Trends in Medical and Service Robotics: MESROB 2020 7, Springer. https://doi.org/10.1007/978-3-030-58104-6_27 DOI: https://doi.org/10.1007/978-3-030-58104-6_27
Torbati, A. H. M., S. Jami and H. R. Kobravi (2022). "Is the Hénon map able to predict the interaction dynamics between the knee and hip joints emerged during sit-to-stand movement?" Biomedical Physics & Engineering Express 8(4): 045003. https://doi.org/10.1088/2057-1976/ac6caa DOI: https://doi.org/10.1088/2057-1976/ac6caa
Yang, J. and B. Ozsoy (2020). "Three dimensional unassisted sit-to-stand prediction for virtual healthy young and elderly individuals." Multibody System Dynamics 49: 33-52. https://doi.org/10.1007/s11044-019-09699-9 DOI: https://doi.org/10.1007/s11044-019-09699-9
Zinkovsky, A. V., V. A. Sholuha and A. A. Ivanov (1996). Mathematical modelling and computer simulation of biomechanical systems, World Scientific. https://doi.org/10.1142/9789812796967 DOI: https://doi.org/10.1142/9789812796967