The effect of self-regulated neck-cooling on physical and cognitive performance during heat stress

Main Article Content

Aine Bagnall
https://orcid.org/0009-0004-3334-0906
Enrico Giuliani
Christopher Tyler
https://orcid.org/0000-0002-3233-0771
Henning Myrene
https://orcid.org/0009-0007-9451-4932

Abstract

This study investigated the physiological, perceptual, cognitive, and performance effects of self-regulated neck-cooling during heat stress. Nine, healthy, non-heat acclimated, participants undertook two experimental trials in the heat (35°C; 50% rh) during which they completed bouts of supine rest (30min), submaximal cycling exercise (20min at ~140bpm), and supine recovery (15min). Participants wore a novel electronic cooling collar in one trial (COOL) and were able to personalise the frequency and intensity of the cooling to maintain thermal comfort using a tablet-based application. Participants reduced the collar temperature over time which reduced their mean neck temperature throughout (-2.2 ± 0.6°C) and local neck thermal sensation during the rest and exercise bouts. The collar had no effect on physiological (rectal temperature [Δ 0.0 ± 0.1°C], aural temperature [Δ 0.0 ± 0.2°C], skin temperature [Δ 0.1 ± 0.3°C], or heart rate [Δ -4 ± 7 bpm]) or perceptual strain (whole-body thermal sensation and comfort) during rest or exercise bouts nor did it improve cognitive performance (reaction time, movement time, and spatial working memory), mood, or overhead press performance. The demands of the protocol investigated may have been insufficient to alter physiological strain or mood sufficiently to necessitate neck cooling despite improved localized thermal sensation.

Article Details

How to Cite
Bagnall, A., Giuliani, E., Tyler, C., & Myrene, H. (2026). The effect of self-regulated neck-cooling on physical and cognitive performance during heat stress. Scientific Journal of Sport and Performance, 5(2), 335–346. https://doi.org/10.55860/DOLL4539
Section
Performance Analysis of Sport and Physical Conditioning
Author Biographies

Aine Bagnall, University of Roehampton

School of Life and Health Sciences.

Enrico Giuliani, Neuron Guard Srl

Research and Development.

Christopher Tyler, University of Roehampton

School of Life and Health Sciences.

Henning Myrene, University of Roehampton

School of Life and Health Sciences.

References

American College of Sports Medicine Position Stand and American Heart Association. (1998). Recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Med.Sci.Sports Exerc., 30(6), 1009-1018. https://doi.org/10.1249/00005768-199806000-00034 DOI: https://doi.org/10.1249/00005768-199806000-00034

Bongers, C. C., Hopman, M. T., & Eijsvogels, T. M. (2017). Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations. Temperature.(Austin.), 4(2332-8940 (Linking)), 60-78. https://doi.org/10.1080/23328940.2016.1277003 DOI: https://doi.org/10.1080/23328940.2016.1277003

Borg, G. (1982). Psychophysical bases of perceived exertion. Med.Sci.Sports Exerc., 14, 377-382. https://doi.org/10.1249/00005768-198205000-00012 DOI: https://doi.org/10.1249/00005768-198205000-00012

Bright, F. M., Chaseling, G. K., Jay, O., & Morris, N. B. (2019). Self-paced exercise performance in the heat with neck cooling, menthol application, and abdominal cooling. Journal of Science and Medicine in Sport, 22(3), 371-377. https://doi.org/10.1016/j.jsams.2018.09.225 DOI: https://doi.org/10.1016/j.jsams.2018.09.225

Cotter, J. D., & Taylor, N. A. (2005). The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: An open-loop approach. J.Physiol, 565(Pt 1), 335-345. https://doi.org/10.1113/jphysiol.2004.081562 DOI: https://doi.org/10.1113/jphysiol.2004.081562

Cuttell, S. A., Kiri, V., & Tyler, C. (2016). A Comparison of 2 Practical Cooling Methods on Cycling Capacity in the Heat. J.Athl.Train. https://doi.org/10.4085/1062-6050-51.8.07 DOI: https://doi.org/10.4085/1062-6050-51.8.07

Donnan, K. J., Williams, E. L., & Bargh, M. J. (2023). The effectiveness of heat preparation and alleviation strategies for cognitive performance: A systematic review. Temperature (Austin, Tex.), 10(4), 404-433. https://doi.org/10.1080/23328940.2022.2157645 DOI: https://doi.org/10.1080/23328940.2022.2157645

Douzi, W., Dugué, B., Vinches, L., Al Sayed, C., Hallé, S., Bosquet, L., & Dupuy, O. (2019). Cooling during exercise enhances performances, but the cooled body areas matter: A systematic review with meta-analyses. Scandinavian Journal of Medicine & Science in Sports, 29(11), 1660-1676. https://doi.org/10.1111/sms.13521 DOI: https://doi.org/10.1111/sms.13521

Faulkner, S. H., Broekhuijzen, I., Raccuglia, M., Hupperets, M., Hodder, S. G., & Havenith, G. (2019). The Threshold Ambient Temperature for the Use of Precooling to Improve Cycling Time-Trial Performance. International Journal of Sports Physiology and Performance, 14(3), 323-330. https://doi.org/10.1123/ijspp.2018-0310 DOI: https://doi.org/10.1123/ijspp.2018-0310

Flouris, A. D., Dinas, P. C., Ioannou, L. G., Nybo, L., Havenith, G., Kenny, G. P., & Kjellstrom, T. (2018). Workers' health and productivity under occupational heat strain: A systematic review and meta-analysis. The Lancet. Planetary Health, 2(12), e521-e531. https://doi.org/10.1016/S2542-5196(18)30237-7 DOI: https://doi.org/10.1016/S2542-5196(18)30237-7

Gagge, A. P., Stolwijk, J. A., & Hardy, J. D. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ.Res., 1(0013-9351 (Linking)), 1-20. https://doi.org/10.1016/0013-9351(67)90002-3 DOI: https://doi.org/10.1016/0013-9351(67)90002-3

Galloway, S. D. R., & Maughan, R. J. (1997). Effects of ambient temperature on the capacity to perform prolonged exercise in man. Med.Sci.Sports Exerc., 29, 1240-1249. https://doi.org/10.1097/00005768-199709000-00018 DOI: https://doi.org/10.1097/00005768-199709000-00018

Gaoua, N. (2010). Cognitive function in hot environments: A question of methodology. Scand.J.Med.Sci.Sports, 20 Suppl 3(0905-7188 (Linking)), 60-70. https://doi.org/10.1111/j.1600-0838.2010.01210.x DOI: https://doi.org/10.1111/j.1600-0838.2010.01210.x

Gaoua, N., Racinais, S., Grantham, J., & El, M. F. (2011). Alterations in cognitive performance during passive hyperthermia are task dependent. Int.J.Hyperthermia, 27(1), 1-9. https://doi.org/10.3109/02656736.2010.516305 DOI: https://doi.org/10.3109/02656736.2010.516305

Gonzalez-Alonso, J., Teller, C., Andersen, S. L., Jensen, F. B., Hyldig, T., & Nielsen, B. (1999). Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J.Appl.Physiol, 86(3), 1032-1039. https://doi.org/10.1152/jappl.1999.86.3.1032 DOI: https://doi.org/10.1152/jappl.1999.86.3.1032

Grove, J. R., & Prapavessis, H. (1992). Preliminary evidence for the reliability and validity of an abbreviated Profile of Mood States. International Journal of Sport Psychology, 23(2), 93-109.

Jeffries, O., & Waldron, M. (2019). The effects of menthol on exercise performance and thermal sensation: A meta-analysis. Journal of Science and Medicine in Sport, 22(6), 707-715. https://doi.org/10.1016/j.jsams.2018.12.002 DOI: https://doi.org/10.1016/j.jsams.2018.12.002

Kuipers, H., Verstappen, F. T., Keizer, H. A., Geurten, P., & van, K. G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. Int.J.Sports Med., 6(0172-4622 (Print)), 197-201. https://doi.org/10.1055/s-2008-1025839 DOI: https://doi.org/10.1055/s-2008-1025839

Lavinio, A., Beqiri, E., & Kataria, K. (2024). A Novel Technology for Targeted Brain Temperature Management. Neurocritical Care, 40(2), 785-790. https://doi.org/10.1007/s12028-023-01800-7 DOI: https://doi.org/10.1007/s12028-023-01800-7

Lee, J. K., Koh, A. C., Koh, S. X., Liu, G. J., Nio, A. Q., & Fan, P. W. (2014). Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur.J.Appl.Physiol, 114(1439-6327 (Electronic)), 375-384. https://doi.org/10.1007/s00421-013-2774-9 DOI: https://doi.org/10.1007/s00421-013-2774-9

Mazalan, N. S., Landers, G. J., Wallman, K. E., & Ecker, U. (2022). A Combination of Ice Ingestion and Head Cooling Enhances Cognitive Performance during Endurance Exercise in the Heat. Journal of Sports Science & Medicine, 21(1), 23-32. https://doi.org/10.52082/jssm.2022.23 DOI: https://doi.org/10.52082/jssm.2022.23

Minett, G. M., Duffield, R., Marino, F. E., & Portus, M. (2011). Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Med.Sci.Sports Exerc., 43(9), 1760-1769. https://doi.org/10.1249/MSS.0b013e318211be3e DOI: https://doi.org/10.1249/MSS.0b013e318211be3e

Moss, J. N., Trangmar, S. J., Mackenzie, R. W. A., & Tyler, C. J. (2021). The effects of pre- and per-cooling interventions used in isolation and combination on subsequent 15-minute time-trial cycling performance in the heat. Journal of Science and Medicine in Sport, 24(8), 800-805. https://doi.org/10.1016/j.jsams.2021.04.006 DOI: https://doi.org/10.1016/j.jsams.2021.04.006

O'Neill, B. V., Davies, K. M., & Morris-Patterson, T. E. (2020). Singapore Sling: F1 Race Team Cognitive Function and Mood Responses During the Singapore Grand Prix. The Journal of Strength & Conditioning Research, 34(12), 3587. https://doi.org/10.1519/JSC.0000000000002267 DOI: https://doi.org/10.1519/JSC.0000000000002267

Phillips, D. B., Ehnes, C. M., Welch, B. G., Lee, L. N., Simin, I., & Petersen, S. R. (2018). Influence of work clothing on physiological responses and performance during treadmill exercise and the Wildland Firefighter Pack Test. Applied Ergonomics, 68, 313-318. https://doi.org/10.1016/j.apergo.2017.12.010 DOI: https://doi.org/10.1016/j.apergo.2017.12.010

Piil, J. F., Lundbye-Jensen, J., Trangmar, S. J., & Nybo, L. (2017). Performance in complex motor tasks deteriorates in hyperthermic humans. Temperature (Austin, Tex.), 4(4), 420-428. https://doi.org/10.1080/23328940.2017.1368877 DOI: https://doi.org/10.1080/23328940.2017.1368877

Racinais, S., Gaoua, N., & Grantham, J. (2008). Hyperthermia impairs short-term memory and peripheral motor drive transmission. J.Physiol, 586(Pt 19), 4751-4762. https://doi.org/10.1113/jphysiol.2008.157420 DOI: https://doi.org/10.1113/jphysiol.2008.157420

Racinais, S., Hosokawa, Y., Akama, T., Bermon, S., Bigard, X., Casa, D. J., Grundstein, A., Jay, O., Massey, A., Migliorini, S., Mountjoy, M., Nikolic, N., Pitsiladis, Y. P., Schobersberger, W., Steinacker, J. M., Yamasawa, F., Zideman, D. A., Engebretsen, L., & Budgett, R. (2023). IOC consensus statement on recommendations and regulations for sport events in the heat. British Journal of Sports Medicine, 57(1), 8-25. https://doi.org/10.1136/bjsports-2022-105942 DOI: https://doi.org/10.1136/bjsports-2022-105942

Ramanathan, N. L. (1964). A new weighting system for mean surface temperature of the human body. J.Appl.Physiol, 19, 531-533. https://doi.org/10.1152/jappl.1964.19.3.531 DOI: https://doi.org/10.1152/jappl.1964.19.3.531

Schlader, Z. J., Simmons, S. E., Stannard, S. R., & Mundel, T. (2011). The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiol Behav. https://doi.org/10.1016/j.physbeh.2011.02.002 DOI: https://doi.org/10.1016/j.physbeh.2011.02.002

Tetzlaff, E. J., Rd, M., Fk, O., & Gp, K. (2025). Knowledge, Awareness, Practices, and Perceptions of Risk and Responsibility Related to Extreme Heat: An Exploratory Survey of Older Adults in Canada. Journal of Public Health Management and Practice : JPHMP. https://doi.org/10.1097/PHH.0000000000002120 DOI: https://doi.org/10.1097/PHH.0000000000002120

Tiffin, J., & Asher, E. J. (1948). The Purdue pegboard; norms and studies of reliability and validity. The Journal of Applied Psychology, 32(3), 234-247. https://doi.org/10.1037/h0061266 DOI: https://doi.org/10.1037/h0061266

Tyler, C. J., Reeve, T., Sieh, N., & Cheung, S. S. (2024). Effects of Heat Adaptation on Physiology, Perception, and Exercise Performance in the Heat: An Updated Meta-Analysis. Journal of Science in Sport and Exercise. https://doi.org/10.1007/s42978-023-00263-8 DOI: https://doi.org/10.1007/s42978-023-00263-8

Tyler, C. J., & Sunderland, C. (2011a). Cooling the neck region during exercise in the heat. J.Athl.Train., 46(1938-162X (Electronic)), 61-68. https://doi.org/10.4085/1062-6050-46.1.61 DOI: https://doi.org/10.4085/1062-6050-46.1.61

Tyler, C. J., & Sunderland, C. (2011b). Neck cooling and running performance in the heat: Single versus repeated application. Med.Sci.Sports Exerc., 43(1530-0315 (Electronic)), 2388-2395. https://doi.org/10.1249/MSS.0b013e318222ef72 DOI: https://doi.org/10.1249/MSS.0b013e318222ef72

Tyler, C. J., Wild, P., & Sunderland, C. (2010). Practical neck cooling and time-trial running performance in a hot environment. Eur.J.Appl.Physiol, 110(5), 1063-1074. https://doi.org/10.1007/s00421-010-1567-7 DOI: https://doi.org/10.1007/s00421-010-1567-7

Young, A. J., Sawka, M. N., Epstein, Y., Decristofano, B., & Pandolf, K. B. (1987). Cooling different body surfaces during upper and lower body exercise. J.Appl.Physiol, 63(3), 1218-1223. https://doi.org/10.1152/jappl.1987.63.3.1218 DOI: https://doi.org/10.1152/jappl.1987.63.3.1218