Effects of high-intensity training on neuromuscular fatigue in early adolescent soccer players

Main Article Content

Oussama Kessouri
https://orcid.org/0000-0002-9831-1610

Abstract

Purpose: This study aimed to assess the extent of neuromuscular fatigue in early adolescent soccer players following a high-intensity training session that combined Speed, Agility, and Quickness (SAQ) drills with small-sided game (SSG). Method: Fourteen youth soccer players participated in the study (year: 13.21 ± 0.69 years, height: 156.28 ± 3.95 cm, weight: 47.14 ± 10.77 kg). A within-subjects, repeated-measures design was used to evaluate the variations in neuromuscular fatigue, assessments were conducted immediately before the training session, immediately after, one hour post-session, 24 hours post-session, and 48 hours post-session. The study employed the 10-meter speed test and the Countermovement jump (CMJ) test, both recognized as valid and reliable indicators of neuromuscular fatigue. Statistical analysis was performed using SPSS software. Results: The results revealed statistically significant differences in CMJ test scores between the initial measurement (pre-session) and one hour post-training (p < .05), as well as 24 hours post-training (p < .05). Conclusion: The high-intensity training session for youth soccer players induced significant neuromuscular fatigue, persisting up to 24 hours. These findings underscore the importance of monitoring neuromuscular fatigue to optimize recovery and reduce the risk of overexertion and injuries in early adolescent soccer players.

Article Details

How to Cite
Kessouri, O. (2025). Effects of high-intensity training on neuromuscular fatigue in early adolescent soccer players. Scientific Journal of Sport and Performance, 4(4), 534–543. https://doi.org/10.55860/PGUF5555
Section
Performance Analysis of Sport and Physical Conditioning
Author Biography

Oussama Kessouri, University of Jijel

Department of Sciences and Techniques of Physical and Sports Activities. Faculty of Human and Social Sciences.

References

Akyildiz, Z., Ocak, Y., Clemente, F. M., Birgonul, Y., Günay, M., & Nobari, H. (2022). Monitoring the post-match neuromuscular fatigue of young Turkish football players. Scientific reports, 12(1), 13835. https://doi.org/10.1038/s41598-022-17831-7 DOI: https://doi.org/10.1038/s41598-022-17831-7

Alba-Jiménez, C., Moreno-Doutres,D.,& Peña,J.(2022).Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review. Sports (Basel, Switzerland), 10(3), 33. https://doi.org/10.3390/sports10030033 DOI: https://doi.org/10.3390/sports10030033

Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiological reviews, 88(1), 287-332. https://doi.org/10.1152/physrev.00015.2007 DOI: https://doi.org/10.1152/physrev.00015.2007

Altmann, S., Ringhof, S., Neumann, R., Woll, A., & Rumpf, M. C. (2019). Validity and reliability of speed tests used in soccer: A systematic review. PloS one, 14(8), e0220982. https://doi.org/10.1371/journal.pone.0220982 DOI: https://doi.org/10.1371/journal.pone.0220982

Bénézet, J.M., Hasler, H. (n.d.). FIFA youth football. Forest Stewardship Council.

Bontemps, B., Piponnier, E., Chalchat, E., Blazevich, A. J., Julian, V., Bocock, O., Duclos, M., Martin, V., & Ratel, S. (2019). Children Exhibit a More Comparable Neuromuscular Fatigue Profile to Endurance Athletes Than Untrained Adults. Frontiers in physiology, 10, 119. https://doi.org/10.3389/fphys.2019.00119 DOI: https://doi.org/10.3389/fphys.2019.00119

Brownstein, C. G., Dent, J. P., Parker, P., Hicks, K. M., Howatson, G., Goodall, S., & Thomas, K. (2017). Etiology and Recovery of Neuromuscular Fatigue following Competitive Soccer Match-Play. Frontiers in physiology, 8, 831. https://doi.org/10.3389/fphys.2017.00831 DOI: https://doi.org/10.3389/fphys.2017.00831

Buzzi, U. H., Stergiou, N., Kurz, M. J., Hageman, P. A., & Heidel, J. (2003). Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18, 435-443. https://doi.org/10.1016/S0268-0033(03)00029-9 DOI: https://doi.org/10.1016/S0268-0033(03)00029-9

Byrne, C., Twist, C., & Eston, R. (2004). Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports medicine (Auckland, N.Z.), 34(1), 49-69. https://doi.org/10.2165/00007256-200434010-00005 DOI: https://doi.org/10.2165/00007256-200434010-00005

Claudino, J. G., Cronin, J., Mezêncio, B., McMaster, D. T., McGuigan, M., Tricoli, V., Amadio, A. C., & Serrão, J. C. (2017). The countermovement jump to monitor neuromuscular status: A meta-analysis. Journal of science and medicine in sport, 20(4), 397-402. https://doi.org/10.1016/j.jsams.2016.08.011 DOI: https://doi.org/10.1016/j.jsams.2016.08.011

Cortes N., Quammen D., Lucci S., Greska E., Onate J. (2012). A functional agility short-term fatigue protocol changes lower extremity mechanics. Journal of Sports Science. 30, 797-805. https://doi.org/10.1080/02640414.2012.671528 DOI: https://doi.org/10.1080/02640414.2012.671528

Cortes, N., Onate, J., & Morrison, S. (2014). Differential effects of fatigue on movement variability. Gait & posture, 39(3), 888-893. https://doi.org/10.1016/j.gaitpost.2013.11.020 DOI: https://doi.org/10.1016/j.gaitpost.2013.11.020

Dotan, R., Mitchell, C., Cohen, R., Klentrou, P., Gabriel, D., & Falk, B. (2012). Child-adult differences in muscle activation -a review. Pediatric exercise science, 24(1), 2-21. https://doi.org/10.1123/pes.24.1.2 DOI: https://doi.org/10.1123/pes.24.1.2

Edouard P., Mendiguchia J., Lahti J., Arnal P. J., Gimenez P., Jiménez-Reyes P., et al. (2018). Sprint acceleration mechanics in fatigue conditions: compensatory role of gluteal muscles in horizontal force production and potential protection of hamstring muscles. Frontiers in Psychology. 9, 1706. https://doi.org/10.3389/fphys.2018.01706 DOI: https://doi.org/10.3389/fphys.2018.01706

Eime, R. M., Young, J. A., Harvey, J. T., Charity, M. J., & Payne, W. R. (2013). A systematic review of the psychological and social benefits of participation in sport for adults: informing development of a conceptual model of health through sport. The international journal of behavioral nutrition and physical activity, 10, 135. https://doi.org/10.1186/1479-5868-10-135 DOI: https://doi.org/10.1186/1479-5868-10-135

Gathercole, R., Sporer, B., Stellingwerff, T., & Sleivert, G. (2015). Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. International journal of sports physiology and performance, 10(1), 84-92. https://doi.org/10.1123/ijspp.2013-0413 DOI: https://doi.org/10.1123/ijspp.2013-0413

Goulart, K. N. O., Coimbra, C. C., Campos, H. O., Drummond, L. R., Ogando, P. H. M., Brown, G., Couto, B. P., Duffield, R., & Wanner, S. P. (2022). Fatigue and Recovery Time Course After Female Soccer Matches: A Systematic Review And Meta-analysis. Sports medicine-open, 8(1), 72. https://doi.org/10.1186/s40798-022-00466-3 DOI: https://doi.org/10.1186/s40798-022-00466-3

Halson, S. L., & Jeukendrup, A. E. (2004). Does overtraining exist? An analysis of overreaching and overtraining research. Sports medicine (Auckland, N.Z.), 34(14), 967-981. https://doi.org/10.2165/00007256-200434140-00003 DOI: https://doi.org/10.2165/00007256-200434140-00003

Hammami, M. A., Ben Abderrahmane, A., Nebigh, A., Le Moal, E., Ben Ounis, O., Tabka, Z., & Zouhal, H. (2013). Effects of a soccer season on anthropometric characteristics and physical fitness in elite young soccer players. Journal of sports sciences, 31(6), 589-596. https://doi.org/10.1080/02640414.2012.746721 DOI: https://doi.org/10.1080/02640414.2012.746721

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and science in sports and exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278 DOI: https://doi.org/10.1249/MSS.0b013e31818cb278

Koral, J., Oranchuk, D. J., Wrightson, J. G., Twomey, R., & Millet, G. Y. (2020). Mechanisms of neuromuscular fatigue and recovery in unilateral versus bilateral maximal voluntary contractions. Journal of applied physiology, 128(4), 785-794. https://doi.org/10.1152/japplphysiol.00651.2019 DOI: https://doi.org/10.1152/japplphysiol.00651.2019

Liebermann, D.G., & Katz, L. (2003). On the assessment of lower-limb muscular power capability. Isokinetics and Exercise Science, 11, 87-94. https://doi.org/10.3233/IES-2003-0106 DOI: https://doi.org/10.3233/IES-2003-0106

Mandorino, M., Figueiredo, A. J., Gjaka, M., & Tessitore, A. (2023). Injury incidence and risk factors in youth soccer players: a systematic literature review. Part I: epidemiological analysis. Biology of sport, 40(1), 3-25. https://doi.org/10.5114/biolsport.2023.109961 DOI: https://doi.org/10.5114/biolsport.2023.109961

Meardon, S. A., Hamill, J., & Derrick, T. R. (2011). Running injury and stride time variability over a prolonged run. Gait & posture, 33(1), 36-40. https://doi.org/10.1016/j.gaitpost.2010.09.020 DOI: https://doi.org/10.1016/j.gaitpost.2010.09.020

Pinheiro, G. de S., Drummond, M., Almeida, A., Szmuchrowski, L., y Couto, B. (2022). The Effect of a Repeated Sprint Training Session on Neuromuscular Acute Fatigue. Lecturas: Educación Física y Deportes, 27(289), 42-55. https://doi.org/10.46642/efd.v27i289.2682 DOI: https://doi.org/10.46642/efd.v27i289.2682

Piponnier, E., Martin, V., Bontemps, B., Chalchat, E., Julian, V., Bocock, O., Duclos, M., & Ratel, S. (2018). Child-adult differences in neuromuscular fatigue are muscle dependent. Journal of applied physiology, 125(4), 1246-1256. https://doi.org/10.1152/japplphysiol.00244.2018 DOI: https://doi.org/10.1152/japplphysiol.00244.2018

Quagliarella, L., Sasanelli, N., Belgiovine, G., Accettura, D., Notarnicola, A., & Moretti, B. (2011). Evaluation of counter movement jump parameters in young male soccer players. Journal of applied biomaterials & biomechanic, 9(1), 40-46. https://doi.org/10.5301/JABB.2011.7732 DOI: https://doi.org/10.5301/JABB.2011.7732

Ratel, S., Duché, P., & Williams, C. A. (2006). Muscle fatigue during high-intensity exercise in children. Sports medicine, 36(12), 1031-1065. https://doi.org/10.2165/00007256-200636120-00004 DOI: https://doi.org/10.2165/00007256-200636120-00004

Silva, H., Nakamura, F. Y., Beato, M., & Marcelino, R. (2023). Acceleration and deceleration demands during training sessions in football: a systematic review. Science & medicine in football, 7(3), 198-213. https://doi.org/10.1080/24733938.2022.2090600 DOI: https://doi.org/10.1080/24733938.2022.2090600

Silva, J. R., Rumpf, M. C., Hertzog, M., Castagna, C., Farooq, A., Girard, O., & Hader, K. (2018). Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports medicine, 48(3), 539-583. https://doi.org/10.1007/s40279-017-0798-8 DOI: https://doi.org/10.1007/s40279-017-0798-8

Skala, F., & Zemková, E. (2023). Neuromuscular and perceptual-cognitive response to 4v4 small-sided game in youth soccer players. Frontiers in physiology, 14, 1260096. https://doi.org/10.3389/fphys.2023.1260096 DOI: https://doi.org/10.3389/fphys.2023.1260096

Small K., McNaughton L., Greig M., Lovell R. (2010). The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. Journal of Science and Medicine in Sport, 13, 120-125. https://doi.org/10.1016/j.jsams.2008.08.005 DOI: https://doi.org/10.1016/j.jsams.2008.08.005

Thorlund J. B., Aagaard P., Madsen K. (2009). Rapid muscle force capacity changes after soccer match play. International Journal of Sports Medicine. 30, 273-278. https://doi.org/10.1055/s-0028-1104587 DOI: https://doi.org/10.1055/s-0028-1104587

Tornero-Aguilera, J. F., Jimenez-Morcillo, J., Rubio-Zarapuz, A., & Clemente-Suárez, V. J. (2022). Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. International journal of environmental research and public health, 19(7), 3909. https://doi.org/10.3390/ijerph19073909 DOI: https://doi.org/10.3390/ijerph19073909

Vieira, A., Ribeiro, G. L., Macedo, V., de Araújo Rocha Junior, V., Baptista, R. S., Gonçalves, C., Cunha, R., & Tufano, J. (2023). Evidence of validity and reliability of Jumpo 2 and MyJump 2 for estimating vertical jump variables. PeerJ, 11, e14558. https://doi.org/10.7717/peerj.14558 DOI: https://doi.org/10.7717/peerj.14558

Wallmann, H. (2007). "Muscle fatigue," in Sports-specific rehabilitation (Amsterdam, Netherlands: Elsevier), 87-95. https://doi.org/10.1016/B978-044306642-9.50008-3 DOI: https://doi.org/10.1016/B978-044306642-9.50008-3

Wik, E., Chamari, K., Tabben, M., Di Salvo, V. Gregson, W., & Bahr, R. (2023). Exploring growth, maturity and age as injury risk factors in high-level youth football. Sports Medicine International Open. https://doi.org/10.1055/a-2180-4594 DOI: https://doi.org/10.1055/a-2180-4594

Williams, D. S., 3rd, Cole, J. H., & Powell, D. W. (2017). Lower Extremity Joint Work During Acceleration, Deceleration, and Steady State Running. Journal of applied biomechanics, 33(1), 56-63. https://doi.org/10.1123/jab.2016-0063 DOI: https://doi.org/10.1123/jab.2016-0063

World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053 DOI: https://doi.org/10.1001/jama.2013.281053