Ergogenic effects of the combination of caffeine and New Zealand blackcurrant supplements on time trial A double-blind single-case experimental study

Main Article Content

Sebastian Zart
Carlo Dindorf
Michael Fröhlich


The use of single supplements to enhance performance is widespread among athletes. The aim of this study was to increase knowledge about the combined effects of caffeine and New Zealand blackcurrant (NZBC) dietary supplements. In this counterbalanced alternating treatment single-case design, two participants each underwent four phases of four sessions in a double-blind, randomized order. After a 3-week pre-test phase, the supplement combinations of placebo/placebo, caffeine/placebo (5 mg/kg), NZBC/placebo (600 mg), and caffeine/NZBC (5 mg/kg + 600 mg) were taken and weekly performance tests were conducted to examine their effects on relative power (W/kg) during a 20-minute time trial on a bicycle. Data were analyzed descriptively and using the Tau-U calculator from Single Case Research. The ergogenic effect of caffeine was confirmed in both participants, with increases of 3.3% and 6.5%, while the positive effect of NZBC on performance was only seen in one participant (13.4%). The combination of caffeine and NZBC again increased performance in both participants (2.2% and 19.2%), but the data only showed a near additive effect of the supplements in one participant. The participants did not show a consistent performance improvement with the combined intake of the supplements caffeine and NZBC. Further studies are required to confirm or refute this evidence of the synergistic effects of these supplements.

Article Details

How to Cite
Zart, S., Dindorf, C., & Fröhlich, M. (2024). Ergogenic effects of the combination of caffeine and New Zealand blackcurrant supplements on time trial: A double-blind single-case experimental study. Scientific Journal of Sport and Performance, 3(2), 145–159.
Sport Medicine
Author Biographies

Sebastian Zart, University of Kaiserslautern-Landau

Department of Sports Science.

Carlo Dindorf, University of Kaiserslautern-Landau

Department of Sports Science.

Michael Fröhlich, University of Kaiserslautern-Landau

Department of Sports Science.


Anderson, D. E., German, R. E., Harrison, M. E., Bourassa, K. N., & Taylor, C. E. (2020). Real and Perceived Effects of Caffeine on Sprint Cycling in Experienced Cyclists. J Strength Cond Res, 34(4), 929-933. DOI:

Backhouse, S. H., Biddle, S. J., Bishop, N. C., & Williams, C. (2011). Caffeine ingestion, affect and perceived exertion during prolonged cycling. Appetite, 57(1), 247-252. DOI:

Bartaguiz, E., Dindorf, C., Dully, J., Becker, S., & Fröhlich, M. (2022). Effects of increasing physical load and fatigue on the biomechanics of elite cyclists. Scientific Journal of Sport and Performance, 2(1), 59-69. DOI:

Braakhuis, A. J., Somerville, V. X., & Hurst, R. D. (2020). The effect of New Zealand blackcurrant on sport performance and related biomarkers: a systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 17(1), 25-25. DOI:

Castell, L. M., Stear, S. J., & Burke, L. M. (2015). Nutritional Supplements in Sport, Exercise and Health: An A-Z Guide. Abingdon: Routledge. DOI:

Chen, M. J., Fan, X., & Moe, S. T. (2002). Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. Journal of Sports Sciences, 20(11), 873-899. DOI:

Conger, S. A., Tuthill, L. M., & Millard-Stafford, M. L. (2023). Does Caffeine Increase Fat Metabolism? A Systematic Review and Meta-Analysis. International Journal of Sport Nutrition and Exercise Metabolism, 33(2), 112-120. DOI:

Cook, M. D., Myers, S. D., Blacker, S. D., & Willems, M. E. T. (2015). New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. European Journal of Applied Physiology and Occupational Physiology, 115(11), 2357-2365. DOI:

Cook, M. D., Myers, S. D., Gault, M. L., & Willems, M. E. T. (2017). Blackcurrant Alters Physiological Responses and Femoral Artery Diameter during Sustained Isometric Contraction. Nutrients, 9(6), 556. DOI:

Cormano, E. B., Redondo, R. B., Rogel, M., & Bach-Faig, A. (2020). Effect of caffeine as an ergogenic aid to prevent muscle fatigue.

Currie, T. L., Engler, M. M., Olsen, C. H., Krauthamer, V., Scott, J. M., Deuster, P. A., & Flagg, T. P. (2022). The Effects of Blackcurrant and Berry Extracts on Oxidative Stress in Cultured Cardiomyocytes and Microglial Cells. The FASEB Journal, 36(S1). DOI:

Davis, J. M., Zhao, Z., Stock, H. S., Mehl, K. A., Buggy, J., & Hand, G. A. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(2), R399-R404. DOI:

Doherty, M., & Smith, P. M. (2004). Effects of Caffeine Ingestion on Exercise Testing: A Meta-Analysis. 14(6), 626. DOI:

Edirisinghe, I., Banaszewski, K., Cappozzo, J., McCarthy, D., & Burton-Freeman, B. M. (2011). Effect of Black Currant Anthocyanins on the Activation of Endothelial Nitric Oxide Synthase (eNOS) in Vitro in Human Endothelial Cells. Journal of Agricultural and Food Chemistry, 59(16), 8616-8624. DOI:

Godwin, C., Cook, M. D., & Willems, M. E. T. (2017). Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports, 5(3), 69. DOI:

Grgic, J., Diaz-Lara, F. J., Coso, J. D., Duncan, M. J., Tallis, J., Pickering, C., . . . Mikulic, P. (2020). The Effects of Caffeine Ingestion on Measures of Rowing Performance: A Systematic Review and Meta-Analysis. Nutrients, 12(2). DOI:

Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B. J., Bishop, D. J., & Pedisic, Z. (2020). Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. British Journal of Sports Medicine, 54(11), 681-688. DOI:

Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Medicine and Science in Sports and Exercise, 50(8), 1570-1578. DOI:

Gutiérrez-Hellín, J., Aguilar-Navarro, M., Ruiz-Moreno, C., Muñoz, A., Varillas-Delgado, D., Amaro-Gahete, F. J., & Del Coso, J. (2023). Effect of caffeine intake on fat oxidation rate during exercise: is there a dose-response effect? European Journal of Nutrition, 62(1), 311-319. DOI:

Higgins, J. P., & Babu, K. M. (2013). Caffeine reduces myocardial blood flow during exercise. American Journal of Medicine, 126(8), 730.e731-738. DOI:

Irwin, C., Desbrow, B., Ellis, A., O'Keeffe, B., Grant, G., & Leveritt, M. (2011). Caffeine withdrawal and high-intensity endurance cycling performance. Journal of Sports Sciences, 29(5), 509-515. DOI:

Kellmann, M., & Kölling, S. (2019). Recovery and Stress in Sport: A Manual for Testing and Assessment (1. ed.). London: Routledge. DOI:

Kratochwill, T. R., Hitchcock, J. H., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M., & Shadish, W. R. (2013). Single-Case Intervention Research Design Standards. Remedial and Special Education, 34(1), 26-38. DOI:

Lobo, M. A., Moeyaert, M., Baraldi Cunha, A., & Babik, I. (2017). Single-Case Design, Analysis, and Quality Assessment for Intervention Research. J Neurol Phys Ther, 41(3), 187-197. DOI:

McArdle, W. D., Katch, F. I., Pechar, G. S., Jacobson, L., & Ruck, S. (1972). Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Medicine and Science in Sports, 4(4), 182-186. DOI:

Murphy, C., Cook, M. D., & Willems, M. E. T. (2017). Effect of New Zealand Blackcurrant Extract on Repeated Cycling Time Trial Performance. Sports, 5(2), 25. DOI:

Nimmerichter, A., Williams, C., Bachl, N., & Eston, R. (2010). Evaluation of a Field Test to Assess Performance in Elite Cyclists. International Journal of Sports Medicine, 31(03), 160-166. DOI:

Paton, C. D., Morton, L. C., Bomal, B., & Braakhuis, A. J. (2022). The Effects of Blackcurrant and Caffeine Combinations on Performance and Physiology During Repeated High-Intensity Cycling. Int J Sport Nutr Exerc Metab, 32(6), 462-467. DOI:

Pickering, C., & Kiely, J. (2018). Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Medicine, 48(1), 7-16. DOI:

Ruiz-Moreno, C., Gutiérrez-Hellín, J., Amaro-Gahete, F. J., González-García, J., Giráldez-Costas, V., Pérez-García, V., & Del Coso, J. (2021). Caffeine increases whole-body fat oxidation during 1 h of cycling at Fatmax. European Journal of Nutrition, 60(4), 2077-2085. DOI:

Shen, J. G., Brooks, M. B., Cincotta, J., & Manjourides, J. D. (2019). Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 22(2), 232-238. DOI:

Sitko, S., Cirer-Sastre, R., Corbi, F., & López-Laval, I. (2020). Power Assessment in Road Cycling: A Narrative Review. Sustainability, 12(12), 5216. DOI:

Śliż, D., Wiecha, S., Ulaszewska, K., Gąsior, J. S., Lewandowski, M., Kasiak, P. S., & Mamcarz, A. (2022). COVID-19 and athletes: Endurance sport and activity resilience study-CAESAR study. Frontiers in physiology, 13. DOI:

Smirmaul, B. P., de Moraes, A. C., Angius, L., & Marcora, S. M. (2017). Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. European Journal of Applied Physiology and Occupational Physiology, 117(1), 27-38. DOI:

Soares, R. N., Schneider, A., Valle, S. C., & Schenkel, P. C. (2018). The influence of CYP1A2 genotype in the blood pressure response to caffeine ingestion is affected by physical activity status and caffeine consumption level. Vascul Pharmacol, 106, 67-73. DOI:

Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Medicine, 48(8), 1913-1928. DOI:

Strauss, J. A., Willems, M. E. T., & Shepherd, S. O. (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European Journal of Applied Physiology, 118(6), 1265-1272. DOI:

Winkert, K., Kamnig, R., Kirsten, J., Steinacker, J. M., & Treff, G. (2020). Inter- and intra-unit reliability of the COSMED K5: Implications for multicentric and longitudinal testing. PLOS ONE, 15(10), e0241079. DOI:

World Medical Association. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. Journal of the American Medical Association, 310(20), 2191-2194. DOI: