Ergogenic effects of the combination of caffeine and New Zealand blackcurrant supplements on time trial A double-blind single-case experimental study

Main Article Content

Sebastian Zart
https://orcid.org/0000-0003-0574-4589
Carlo Dindorf
https://orcid.org/0000-0003-0378-8481
Michael Fröhlich
https://orcid.org/0000-0003-1982-6374

Abstract

The use of single supplements to enhance performance is widespread among athletes. The aim of this study was to increase knowledge about the combined effects of caffeine and New Zealand blackcurrant (NZBC) dietary supplements. In this counterbalanced alternating treatment single-case design, two participants each underwent four phases of four sessions in a double-blind, randomized order. After a 3-week pre-test phase, the supplement combinations of placebo/placebo, caffeine/placebo (5 mg/kg), NZBC/placebo (600 mg), and caffeine/NZBC (5 mg/kg + 600 mg) were taken and weekly performance tests were conducted to examine their effects on relative power (W/kg) during a 20-minute time trial on a bicycle. Data were analyzed descriptively and using the Tau-U calculator from Single Case Research. The ergogenic effect of caffeine was confirmed in both participants, with increases of 3.3% and 6.5%, while the positive effect of NZBC on performance was only seen in one participant (13.4%). The combination of caffeine and NZBC again increased performance in both participants (2.2% and 19.2%), but the data only showed a near additive effect of the supplements in one participant. The participants did not show a consistent performance improvement with the combined intake of the supplements caffeine and NZBC. Further studies are required to confirm or refute this evidence of the synergistic effects of these supplements.

Article Details

How to Cite
Zart, S., Dindorf, C., & Fröhlich, M. (2024). Ergogenic effects of the combination of caffeine and New Zealand blackcurrant supplements on time trial: A double-blind single-case experimental study. Scientific Journal of Sport and Performance, 3(2), 145–159. https://doi.org/10.55860/ENNP5024
Section
Sport Medicine
Author Biographies

Sebastian Zart, University of Kaiserslautern-Landau

Department of Sports Science.

Carlo Dindorf, University of Kaiserslautern-Landau

Department of Sports Science.

Michael Fröhlich, University of Kaiserslautern-Landau

Department of Sports Science.

References

Anderson, D. E., German, R. E., Harrison, M. E., Bourassa, K. N., & Taylor, C. E. (2020). Real and Perceived Effects of Caffeine on Sprint Cycling in Experienced Cyclists. J Strength Cond Res, 34(4), 929-933. https://doi.org/10.1519/JSC.0000000000003537 DOI: https://doi.org/10.1519/JSC.0000000000003537

Backhouse, S. H., Biddle, S. J., Bishop, N. C., & Williams, C. (2011). Caffeine ingestion, affect and perceived exertion during prolonged cycling. Appetite, 57(1), 247-252. https://doi.org/10.1016/j.appet.2011.05.304 DOI: https://doi.org/10.1016/j.appet.2011.05.304

Bartaguiz, E., Dindorf, C., Dully, J., Becker, S., & Fröhlich, M. (2022). Effects of increasing physical load and fatigue on the biomechanics of elite cyclists. Scientific Journal of Sport and Performance, 2(1), 59-69. https://doi.org/10.55860/NBMD9425 DOI: https://doi.org/10.55860/NBMD9425

Braakhuis, A. J., Somerville, V. X., & Hurst, R. D. (2020). The effect of New Zealand blackcurrant on sport performance and related biomarkers: a systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 17(1), 25-25. https://doi.org/10.1186/s12970-020-00354-9 DOI: https://doi.org/10.1186/s12970-020-00354-9

Castell, L. M., Stear, S. J., & Burke, L. M. (2015). Nutritional Supplements in Sport, Exercise and Health: An A-Z Guide. Abingdon: Routledge. https://doi.org/10.4324/9781315772509 DOI: https://doi.org/10.4324/9781315772509

Chen, M. J., Fan, X., & Moe, S. T. (2002). Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. Journal of Sports Sciences, 20(11), 873-899. https://doi.org/10.1080/026404102320761787 DOI: https://doi.org/10.1080/026404102320761787

Conger, S. A., Tuthill, L. M., & Millard-Stafford, M. L. (2023). Does Caffeine Increase Fat Metabolism? A Systematic Review and Meta-Analysis. International Journal of Sport Nutrition and Exercise Metabolism, 33(2), 112-120. https://doi.org/10.1123/ijsnem.2022-0131 DOI: https://doi.org/10.1123/ijsnem.2022-0131

Cook, M. D., Myers, S. D., Blacker, S. D., & Willems, M. E. T. (2015). New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. European Journal of Applied Physiology and Occupational Physiology, 115(11), 2357-2365. https://doi.org/10.1007/s00421-015-3215-8 DOI: https://doi.org/10.1007/s00421-015-3215-8

Cook, M. D., Myers, S. D., Gault, M. L., & Willems, M. E. T. (2017). Blackcurrant Alters Physiological Responses and Femoral Artery Diameter during Sustained Isometric Contraction. Nutrients, 9(6), 556. https://doi.org/10.3390/nu9060556 DOI: https://doi.org/10.3390/nu9060556

Cormano, E. B., Redondo, R. B., Rogel, M., & Bach-Faig, A. (2020). Effect of caffeine as an ergogenic aid to prevent muscle fatigue.

Currie, T. L., Engler, M. M., Olsen, C. H., Krauthamer, V., Scott, J. M., Deuster, P. A., & Flagg, T. P. (2022). The Effects of Blackcurrant and Berry Extracts on Oxidative Stress in Cultured Cardiomyocytes and Microglial Cells. The FASEB Journal, 36(S1). https://doi.org/10.1096/fasebj.2022.36.S1.R2805 DOI: https://doi.org/10.1096/fasebj.2022.36.S1.R2805

Davis, J. M., Zhao, Z., Stock, H. S., Mehl, K. A., Buggy, J., & Hand, G. A. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(2), R399-R404. https://doi.org/10.1152/ajpregu.00386.2002 DOI: https://doi.org/10.1152/ajpregu.00386.2002

Doherty, M., & Smith, P. M. (2004). Effects of Caffeine Ingestion on Exercise Testing: A Meta-Analysis. 14(6), 626. https://doi.org/10.1123/ijsnem.14.6.626 DOI: https://doi.org/10.1123/ijsnem.14.6.626

Edirisinghe, I., Banaszewski, K., Cappozzo, J., McCarthy, D., & Burton-Freeman, B. M. (2011). Effect of Black Currant Anthocyanins on the Activation of Endothelial Nitric Oxide Synthase (eNOS) in Vitro in Human Endothelial Cells. Journal of Agricultural and Food Chemistry, 59(16), 8616-8624. https://doi.org/10.1021/jf201116y DOI: https://doi.org/10.1021/jf201116y

Godwin, C., Cook, M. D., & Willems, M. E. T. (2017). Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports, 5(3), 69. https://doi.org/10.3390/sports5030069 DOI: https://doi.org/10.3390/sports5030069

Grgic, J., Diaz-Lara, F. J., Coso, J. D., Duncan, M. J., Tallis, J., Pickering, C., . . . Mikulic, P. (2020). The Effects of Caffeine Ingestion on Measures of Rowing Performance: A Systematic Review and Meta-Analysis. Nutrients, 12(2). https://doi.org/10.3390/nu12020434 DOI: https://doi.org/10.3390/nu12020434

Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B. J., Bishop, D. J., & Pedisic, Z. (2020). Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. British Journal of Sports Medicine, 54(11), 681-688. https://doi.org/10.1136/bjsports-2018-100278 DOI: https://doi.org/10.1136/bjsports-2018-100278

Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Medicine and Science in Sports and Exercise, 50(8), 1570-1578. https://doi.org/10.1249/MSS.0000000000001596 DOI: https://doi.org/10.1249/MSS.0000000000001596

Gutiérrez-Hellín, J., Aguilar-Navarro, M., Ruiz-Moreno, C., Muñoz, A., Varillas-Delgado, D., Amaro-Gahete, F. J., & Del Coso, J. (2023). Effect of caffeine intake on fat oxidation rate during exercise: is there a dose-response effect? European Journal of Nutrition, 62(1), 311-319. https://doi.org/10.1007/s00394-022-02988-8 DOI: https://doi.org/10.1007/s00394-022-02988-8

Higgins, J. P., & Babu, K. M. (2013). Caffeine reduces myocardial blood flow during exercise. American Journal of Medicine, 126(8), 730.e731-738. https://doi.org/10.1016/j.amjmed.2012.12.023 DOI: https://doi.org/10.1016/j.amjmed.2012.12.023

Irwin, C., Desbrow, B., Ellis, A., O'Keeffe, B., Grant, G., & Leveritt, M. (2011). Caffeine withdrawal and high-intensity endurance cycling performance. Journal of Sports Sciences, 29(5), 509-515. https://doi.org/10.1080/02640414.2010.541480 DOI: https://doi.org/10.1080/02640414.2010.541480

Kellmann, M., & Kölling, S. (2019). Recovery and Stress in Sport: A Manual for Testing and Assessment (1. ed.). London: Routledge. https://doi.org/10.4324/9780429423857 DOI: https://doi.org/10.4324/9780429423857-1

Kratochwill, T. R., Hitchcock, J. H., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M., & Shadish, W. R. (2013). Single-Case Intervention Research Design Standards. Remedial and Special Education, 34(1), 26-38. https://doi.org/10.1177/0741932512452794 DOI: https://doi.org/10.1177/0741932512452794

Lobo, M. A., Moeyaert, M., Baraldi Cunha, A., & Babik, I. (2017). Single-Case Design, Analysis, and Quality Assessment for Intervention Research. J Neurol Phys Ther, 41(3), 187-197. https://doi.org/10.1097/NPT.0000000000000187 DOI: https://doi.org/10.1097/NPT.0000000000000187

McArdle, W. D., Katch, F. I., Pechar, G. S., Jacobson, L., & Ruck, S. (1972). Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Medicine and Science in Sports, 4(4), 182-186. https://doi.org/10.1249/00005768-197200440-00019 DOI: https://doi.org/10.1249/00005768-197200440-00019

Murphy, C., Cook, M. D., & Willems, M. E. T. (2017). Effect of New Zealand Blackcurrant Extract on Repeated Cycling Time Trial Performance. Sports, 5(2), 25. https://doi.org/10.3390/sports5020025 DOI: https://doi.org/10.3390/sports5020025

Nimmerichter, A., Williams, C., Bachl, N., & Eston, R. (2010). Evaluation of a Field Test to Assess Performance in Elite Cyclists. International Journal of Sports Medicine, 31(03), 160-166. https://doi.org/10.1055/s-0029-1243222 DOI: https://doi.org/10.1055/s-0029-1243222

Paton, C. D., Morton, L. C., Bomal, B., & Braakhuis, A. J. (2022). The Effects of Blackcurrant and Caffeine Combinations on Performance and Physiology During Repeated High-Intensity Cycling. Int J Sport Nutr Exerc Metab, 32(6), 462-467. https://doi.org/10.1123/ijsnem.2022-0087 DOI: https://doi.org/10.1123/ijsnem.2022-0087

Pickering, C., & Kiely, J. (2018). Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Medicine, 48(1), 7-16. https://doi.org/10.1007/s40279-017-0776-1 DOI: https://doi.org/10.1007/s40279-017-0776-1

Ruiz-Moreno, C., Gutiérrez-Hellín, J., Amaro-Gahete, F. J., González-García, J., Giráldez-Costas, V., Pérez-García, V., & Del Coso, J. (2021). Caffeine increases whole-body fat oxidation during 1 h of cycling at Fatmax. European Journal of Nutrition, 60(4), 2077-2085. https://doi.org/10.1007/s00394-020-02393-z DOI: https://doi.org/10.1007/s00394-020-02393-z

Shen, J. G., Brooks, M. B., Cincotta, J., & Manjourides, J. D. (2019). Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 22(2), 232-238. https://doi.org/10.1016/j.jsams.2018.07.022 DOI: https://doi.org/10.1016/j.jsams.2018.07.022

Sitko, S., Cirer-Sastre, R., Corbi, F., & López-Laval, I. (2020). Power Assessment in Road Cycling: A Narrative Review. Sustainability, 12(12), 5216. https://doi.org/10.3390/su12125216 DOI: https://doi.org/10.3390/su12125216

Śliż, D., Wiecha, S., Ulaszewska, K., Gąsior, J. S., Lewandowski, M., Kasiak, P. S., & Mamcarz, A. (2022). COVID-19 and athletes: Endurance sport and activity resilience study-CAESAR study. Frontiers in physiology, 13. https://doi.org/10.3389/fphys.2022.1078763 DOI: https://doi.org/10.3389/fphys.2022.1078763

Smirmaul, B. P., de Moraes, A. C., Angius, L., & Marcora, S. M. (2017). Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. European Journal of Applied Physiology and Occupational Physiology, 117(1), 27-38. https://doi.org/10.1007/s00421-016-3496-6 DOI: https://doi.org/10.1007/s00421-016-3496-6

Soares, R. N., Schneider, A., Valle, S. C., & Schenkel, P. C. (2018). The influence of CYP1A2 genotype in the blood pressure response to caffeine ingestion is affected by physical activity status and caffeine consumption level. Vascul Pharmacol, 106, 67-73. https://doi.org/10.1016/j.vph.2018.03.002 DOI: https://doi.org/10.1016/j.vph.2018.03.002

Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Medicine, 48(8), 1913-1928. https://doi.org/10.1007/s40279-018-0939-8 DOI: https://doi.org/10.1007/s40279-018-0939-8

Strauss, J. A., Willems, M. E. T., & Shepherd, S. O. (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European Journal of Applied Physiology, 118(6), 1265-1272. https://doi.org/10.1007/s00421-018-3858-3 DOI: https://doi.org/10.1007/s00421-018-3858-3

Winkert, K., Kamnig, R., Kirsten, J., Steinacker, J. M., & Treff, G. (2020). Inter- and intra-unit reliability of the COSMED K5: Implications for multicentric and longitudinal testing. PLOS ONE, 15(10), e0241079. https://doi.org/10.1371/journal.pone.0241079 DOI: https://doi.org/10.1371/journal.pone.0241079

World Medical Association. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. Journal of the American Medical Association, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053 DOI: https://doi.org/10.1001/jama.2013.281053