Comparative effects of motorized versus traditional sled training on speed, agility, and power in collegiate football athletes over eight weeks

Main Article Content

Trent Yamamoto
Phillip Goldman
John Taylor
https://orcid.org/0009-0007-9461-0393
Trinabh K. Sahni
August E. Blatney
https://orcid.org/0009-0003-8808-2644
Ross J. Lechner
https://orcid.org/0009-0007-0686-7261
Jacob Bright
https://orcid.org/0009-0005-6023-5498
Dominic M. Benna
https://orcid.org/0009-0004-1071-4426
Dylan Cho
https://orcid.org/0009-0001-0441-0563
Aidan Torres
Thalia H. Nguyen
https://orcid.org/0009-0007-7969-3063
Eric V. Neufeld
https://orcid.org/0000-0002-7247-7671
Mitchell S. Mologne
https://orcid.org/0000-0002-1595-8495
Brett A. Dolezal
https://orcid.org/0000-0003-0405-608X

Abstract

Training utilizing a resistance sled has been shown to confer considerable improvements in athletic performance across speed, strength, and power metrics. However, most available training protocols only investigate sled pushing and/or pulling in isolation, with none incorporating lateral movement (i.e., multiplanar movements). The objective of the present study is to determine the efficacy of a novel sled utilizing motorized resistance to improve performance measures while using a comprehensive training program using multiplanar exercises. Forty-eight healthy collegiate male football players were recruited for this 8-week, randomized control trial with three weekly training sessions. Participants were randomized into one of two training groups utilizing either a motorized resistance sled training apparatus (MRS) or a traditional resistance sled training apparatus (CONT). Improvements in countermovement jump height, peak power, 20-meter sprint, and 5-10-5 Pro Agility Test performance were significantly greater in MRS compared to CON (p < .003, d = 1.1; p < .002, d = 1.0; p < .001, d = 1.9; p < .001; d = 1.9; p < .005; d = 0.9, respectively). These findings are the first to demonstrate the efficacy of a novel motorized resistance sled with a training protocol encompassing a variety of multiplanar movements to improve performance measures related to American football

Article Details

How to Cite
Yamamoto, T., Goldman, P., Taylor, J., Sahni, T. K., Blatney, A. E., Lechner, R. J., Bright, J., Benna, D. M., Cho, D., Torres, A., Nguyen, T. H., Neufeld, E. V., Mologne, M. S., & Dolezal, B. A. (2025). Comparative effects of motorized versus traditional sled training on speed, agility, and power in collegiate football athletes over eight weeks. Scientific Journal of Sport and Performance, 4(2), 177–189. https://doi.org/10.55860/IEDO8899
Section
Performance Analysis of Sport and Physical Conditioning
Author Biographies

Trent Yamamoto, University of California Los Angeles & Boston University

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine. University of California Los Angeles. Los Angeles, CA, United States of America.

Chobanian and Avedisian School of Medicine. Boston University. Boston, MA, United States of America.

John Taylor, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Trinabh K. Sahni, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

August E. Blatney, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Ross J. Lechner, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Jacob Bright, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Dominic M. Benna, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Dylan Cho, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Aidan Torres, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Thalia H. Nguyen, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

Eric V. Neufeld, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine. University of California Los Angeles. Los Angeles, CA, United States of America.

Northwell Orthopedics. New Hyde Park, NY, United States of America.

Long Island Jewish Medical Center/North Shore University Hospital. New Hyde Park, NY, United States of America.

Mitchell S. Mologne, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine. University of California Los Angeles. Los Angeles, CA, United States of America.

Washington University School of Medicine. Saint Louis, MO, United States of America.

Brett A. Dolezal, University of California Los Angeles

Airway and UC Fit Digital Health-Exercise Physiology Laboratory. David Geffen School of Medicine.

References

Beardsley C. & Contreras B. (2014). The increasing role of the hip extensor musculature with heavier compound lower-body movements and more explosive sport actions. Strength Cond J., 36: 49-55. https://doi.org/10.1519/SSC.0000000000000047 DOI: https://doi.org/10.1519/SSC.0000000000000047

Bentley I., Atkins S., Edmundson C.J., Metcalfe J., Sinclair J.K. (2014). A review of resisted sled training: implications for current practice. Professional Strength and Conditioning, 34: 23-30.

Bernard J.R., Liao Y-H, Madrigal C.O., Levesque J.D., Fraze M.B., Del Toro I., Lee S. (2021). The Effects of Low Volume Versus High Volume Sled-Push Training on Muscular Adaptation. Exercise Science, 30(2): 264- 269. https://doi.org/10.15857/ksep.2021.30.2.264 DOI: https://doi.org/10.15857/ksep.2021.30.2.264

Binnie M.J., Peeling P., Pinnington H., Landers G., Dawson B. (2013). Effect of surface-specific training on 20-m sprint performance on sand and grass surfaces. J. Strength Cond. Res., 27: 3515-3520. https://doi.org/10.1519/JSC.0b013e31828f043f DOI: https://doi.org/10.1519/JSC.0b013e31828f043f

Bloomfield J., Polman R., O'Donoghue P., McNaughton L. (2007). Effective speed and agility conditioning methodology for random intermittent dynamic type sports. J Strength Cond Res., 21: 1093-1100, 2007. https://doi.org/10.1519/00124278-200711000-00020 DOI: https://doi.org/10.1519/00124278-200711000-00020

Bompa T.O. & Haff G. (2009). Periodization : theory and methodology of training. 5th ed. Leeds: Human Kinetics.

Brughelli M., Cronin J., Levin G., Chaouachi A. (2008). Understanding change of direction ability in sport. Sports Med., 38: 1045-1063. https://doi.org/10.2165/00007256-200838120-00007 DOI: https://doi.org/10.2165/00007256-200838120-00007

Cahill M.J., Cronin J.B., Oliver J.L., Clark K.P., Lloyd R.S., Cross M.R. (2019). Sled Pushing and Pulling to Enhance Speed Capability. Strength and Conditioning Journal, 41(4): 94-104. https://doi.org/10.1519/SSC.0000000000000460 DOI: https://doi.org/10.1519/SSC.0000000000000460

Cissik, J. (2019). Strength and Conditioning: A Concise Introduction. 2nd ed. Routledge. https://doi.org/10.4324/9780429026546 DOI: https://doi.org/10.4324/9780429026546

Clark K.P., Stearne D.J., Walts C.T., Miller A.D. (2010). The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests. Journal of strength and conditioning research, 24(12): 3287-3295. https://doi.org/10.1519/JSC.0b013e3181b62c0a DOI: https://doi.org/10.1519/JSC.0b013e3181b62c0a

Contreras B.M., Cronin J.B., Schoenfeld B.J., Nates R.J., Sonmez G.T. (2013). Are all hip extension exercises created equal? Strength Cond J., 35: 17-22. https://doi.org/10.1519/SSC.0b013e318289fffd DOI: https://doi.org/10.1519/SSC.0b013e318289fffd

Cross M.R., Brughelli M., Samozino P., Brown S.R., Morin, J. (2017). Optimal Loading for Maximizing Power During Sled-Resisted Sprinting. International Journal of Sports Physiology and Performance, 12(8): 1069-1077. https://doi.org/10.1123/ijspp.2016-0362 DOI: https://doi.org/10.1123/ijspp.2016-0362

Dolezal B., Lau M.J., Abrazado M., Storer T., Cooper C. (2013). Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat percentage. Journal of Exercise Physiology Online, 16: 74-83.

Edouard P., Mendiguchia J., Lahti J., Arnal P.J., Gimenez P., Jiménez-Reyes P., Brughelli M., Samozino P., Morin J-B. (2018). Sprint Acceleration Mechanics in Fatigue Conditions: Compensatory Role of Gluteal Muscles in Horizontal Force Production and Potential Protection of Hamstring Muscles. Front. Physiol., 9:1706. https://doi.org/10.3389/fphys.2018.01706 DOI: https://doi.org/10.3389/fphys.2018.01706

Garstecki M.A., Latin R.W., Cuppett M.M. (2004). Comparison of selected physical fitness and performance variables between NCAA Division I and II football players. Journal of strength and conditioning research, 18(2): 292-297. https://doi.org/10.1519/R-13104.1 DOI: https://doi.org/10.1519/00124278-200405000-00016

Gottlieb R., Levi A., Shalom A., Gonzalez J.C., Meckel Y. (2024). The Use of Sleds as a Unique Training Technique for Anaerobic Performance Development among Young Basketball Players. Applied Sciences, 14(7): 2696. https://doi.org/10.3390/app14072696 DOI: https://doi.org/10.3390/app14072696

Haff G. & Triplett N.T. (2016). Essentials of strength training and conditioning. Fourth edition. Champaign, IL, Human Kinetics.

Harman E.A., Rosenstein M.T., Frykman P.N., Rosenstein R.M., Kraemer W.J. (1991). Estimation of human power output from vertical jump. J. Strength Cond. Res., 5: 116-120. https://doi.org/10.1519/00124278-199108000-00002 DOI: https://doi.org/10.1519/00124278-199108000-00002

Hedlund D.P. (2018). Performance of Future Elite Players at the National Football League Scouting Combine. J Strength Cond Res., 32(11): 3112-3118. https://doi.org/10.1519/JSC.0000000000002252 DOI: https://doi.org/10.1519/JSC.0000000000002252

Heyward V. (2001). ASEP methods recommendation: body composition assessment. J Exerc Physiol Online., 4: 1-12.

Hoffman J.R. (2008). The applied physiology of American football. Int. J. Sports Physiol. Perform., 3: 387-392. https://doi.org/10.1123/ijspp.3.3.387 DOI: https://doi.org/10.1123/ijspp.3.3.387

Lahti, J., Huuhka, T., Romero, V., Bezodis, I., Morin, J.B., Häkkinen, K. (2020). Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. PeerJ, 8: e10507. https://doi.org/10.7717/peerj.10507 DOI: https://doi.org/10.7717/peerj.10507

Leard J.S., Cirillo M.A., Katsnelson E., Kimiatek D.A., Miller T.W., Trebincevic K., et al. (2007). Validity of two alternative systems for measuring vertical jump height. J. Strength Cond. Res., 21: 1296-1299. https://doi.org/10.1519/R-21536.1 DOI: https://doi.org/10.1519/00124278-200711000-00055

Lockie R.G., Lazar A., Orjalo A.J., Davis D.L., Moreno M.R., Risso F.G., Hank M.E., Stone R.C., Mosich N.W. (2016). Profiling of Junior College Football Players and Differences between Position Groups. Sports (Basel, Switzerland), 4(3): 41. https://doi.org/10.3390/sports4030041 DOI: https://doi.org/10.3390/sports4030041

Lockie R.G., Murphy A.J., Schultz A.B., Knight T.J., Janse de Jonge X.A.K. (2012). The Effects of Different Speed Training Protocols on Sprint Acceleration Kinematics and Muscle Strength and Power in Field Sport Athletes. Journal of Strength and Conditioning Research, 26(6): 1539-1550. https://doi.org/10.1519/JSC.0b013e318234e8a0 DOI: https://doi.org/10.1519/JSC.0b013e318234e8a0

McMorrow B.J., Ditroilo M., Egan B. (2019). Effect of Heavy Resisted Sled Sprint Training During the Competitive Season on Sprint and Change-of-Direction Performance in Professional Soccer Players. Int J Sports Physiol Perform., 14(8):1066-1073. https://doi.org/10.1123/ijspp.2018-0592 DOI: https://doi.org/10.1123/ijspp.2018-0592

Moran, J., Parry, D.A., Lewis, I., Collison, J., Rumpf, M.C., Sandercock, G.R.H. (2018). Maturation-related adaptations in running speed in response to sprint training in youth soccer players. J. Sci. Med. Sport, 21: 538-542. https://doi.org/10.1016/j.jsams.2017.09.012 DOI: https://doi.org/10.1016/j.jsams.2017.09.012

Parekh S., Patel A. (2017). The NFL Combine as a Predictor of On-field Success. Foot & Ankle Orthopaedics, 2(3). https://doi.org/10.1177/2473011417S000315 DOI: https://doi.org/10.1177/2473011417S000315

Pincivero D.M. & Bompa T.O. (1997). A physiological review of American football. Sports Med., 23: 247-260. https://doi.org/10.2165/00007256-199723040-00004 DOI: https://doi.org/10.2165/00007256-199723040-00004

Pino-Mulero V., Soriano M., Giuliano F., González-García J. (2025). Effects of a priming session with heavy sled pushes on neuromuscular performance and perceived recovery in soccer players: a crossover design study during competitive microcycles. Biology of Sport, 42(1): 59-66. https://doi.org/10.5114/biolsport.2025.139082 DOI: https://doi.org/10.5114/biolsport.2025.139082

Robbins D.W. & Young W.B. (2012). Positional Relationships Between Various Sprint and Jump Abilities in Elite American Football Players. Journal of Strength and Conditioning Research, 26(2): 388-397. https://doi.org/10.1519/JSC.0b013e318225b5fa DOI: https://doi.org/10.1519/JSC.0b013e318225b5fa

Robbins D.W. (2011). Positional physical characteristics of players drafted into the National Football League. J Strength Cond Res., 25(10): 2661-2667. https://doi.org/10.1519/JSC.0b013e318208ae3f DOI: https://doi.org/10.1519/JSC.0b013e318208ae3f

Rodríguez-Rosell D., Mora-Custodio R., Franco-Márquez F., Yáñez-García J.M., González-Badillo J.J. (2017). Traditional vs. Sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players J. Strength Cond. Res., 31: 196-206. https://doi.org/10.1519/JSC.0000000000001476 DOI: https://doi.org/10.1519/JSC.0000000000001476

Rosario, M.G. (2020). Neuromuscular timing modification in responses to increased speed and proportional resistance while pushing a sled in young adults. European Journal of Human Movement, 44: 50-66. https://doi.org/10.21134/eurjhm.2020.44.544 DOI: https://doi.org/10.21134/eurjhm.2020.44.544

Rosario M.G, Keitel K., Meyer J., Weber M. (2022). Constant Resistant at Different Speeds while Pushing a Sled Prompts Different Adaptations in Neuromuscular Timing on Back and Lower Limb Muscles. International Journal of Physical Education, Fitness and Sports, 11(1): 66-74. https://doi.org/10.34256/ijpefs2217 DOI: https://doi.org/10.34256/ijpefs2217

Rosario M., Pagel C., Miller W., Weber M. (2022). Pushing A Sled with Constant Resistance and Controlled Cadence Induces Lower Limb Musculature Quicker Activation Response and Prolongs Duration with Faster Speed . European Journal of Sport Sciences, 1(2): 23-28. https://doi.org/10.24018/ejsport.2022.1.2.12 DOI: https://doi.org/10.24018/ejsport.2022.1.2.12

Sanchez E., Weiss L., Williams T., Ward P., Peterson B., Wellman A., Crandall J. (2023). Positional Movement Demands during NFL Football Games: A 3-Year Review. Applied Sciences, 13(16): 9278. https://doi.org/10.3390/app13169278 DOI: https://doi.org/10.3390/app13169278

Shimokochi Y., Ide D., Kokubu M., Nakaoji T. (2013). Relationships among performance of lateral cutting maneuver from lateral sliding and hip extension and abduction motions, ground reaction force, and body center of mass height. J Strength Cond Res., 27: 1851-1860. https://doi.org/10.1519/JSC.0b013e3182764945 DOI: https://doi.org/10.1519/JSC.0b013e3182764945

Twist P.W. & Benicky D. (1996). Conditioning Lateral Movement for Multi-Sport Athletes: Practical Strength and Quickness Drills. Strength and Conditioning, 18(5): 10-19. https://doi.org/10.1519/1073-6840(1996)018<0010:CLMFMS>2.3.CO;2 DOI: https://doi.org/10.1519/1073-6840(1996)018<0010:CLMFMS>2.3.CO;2

Vincent L.M,. Blissmer B.J., Hatfield D.L. (2019). National Scouting Combine Scores as Performance Predictors in the National Football League. J Strength Cond Res., 33(1): 104-111. https://doi.org/10.1519/JSC.0000000000002937 DOI: https://doi.org/10.1519/JSC.0000000000002937

West D.J., Cunningham D.J., Bracken R.M., et al. (2013). Effects of resisted sprint training on acceleration in professional rugby union players. J Strength Cond Res., 27(4): 1014-1018. https://doi.org/10.1519/JSC.0b013e3182606cff DOI: https://doi.org/10.1519/JSC.0b013e3182606cff

Most read articles by the same author(s)