Effects of a portable, cable-based concentric-only resistance machine on muscular strength in untrained young adults
Main Article Content
Abstract
The purpose of this study was to investigate the effects of concentric-only resistance training in comparison to traditional concentric-eccentric resistance training on upper and lower body strength using a portable cable-based concentric-only resistance machine. Thirty-two participants (10 females, 22 males; mean age of 23.4 ± 2.0) with minimal resistance training experience exercised thrice weekly to complete a 12-week training program. Participants were blinded and randomly allocated 1:1 to an intervention group (n = 16, wherein the resistance training used the concentric-only machine (CRT)) or a control group (n = 16, wherein the resistance training was completed using traditional concentric-eccentric with a conventional cable-based machine (CON)). While both groups improved in 1-RM chest press and squat press performance, there was no significant difference between groups. These findings suggest that the use of a portable CRT machine may confer similar strength benefits in comparison to traditional concentric-eccentric training. It is possible that the lack of the eccentric component with the CRT machine enables for a higher training volume to be completed, which consequently results in strength benefits.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Baechle, T. & Earle, R. (2008). Essentials of strength training and conditioning. National Strength and Conditioning Association. 3rd Ed.
Blazevich A.J., Cannavan D., Coleman D.R., Horne S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology, 103(5): 1565-75. https://doi.org/10.1152/japplphysiol.00578.2007 DOI: https://doi.org/10.1152/japplphysiol.00578.2007
Borodulin K., Sipilä N., Rahkonen O., Leino-Arjas P., Kestilä L., Jousilahti P., et al. (2015). Socio-demographic and behavioral variation in barriers to leisure-time physical activity. Scandinavian Journal of Public Health, 44(1): 62-9. https://doi.org/10.1177/1403494815604080 DOI: https://doi.org/10.1177/1403494815604080
Burd, N. A., West, D. W., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., Holwerda, A. M., Parise, G., Rennie, M. J., Baker, S. K., & Phillips, S. M. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PloS one, 5(8), e12033. https://doi.org/10.1371/journal.pone.0012033 DOI: https://doi.org/10.1371/journal.pone.0012033
Choi S.J., Lim J-Y, Nibaldi E.G., Phillips E.M., Frontera W.R., Fielding R.A., et al. (2012). Eccentric contraction-induced injury to type I, IIA, and IIA/IIX muscle fibers of elderly Adults. Age, 34(1): 215-26. https://doi.org/10.1007/s11357-011-9228-2 DOI: https://doi.org/10.1007/s11357-011-9228-2
Colliander E.B. & Tesch P.A. (1990). Effects of eccentric and concentric muscle actions in resistance training. Acta Physiologica Scandinavica, 140(1): 31-9. https://doi.org/10.1111/j.1748-1716.1990.tb08973.x DOI: https://doi.org/10.1111/j.1748-1716.1990.tb08973.x
Dolezal B., Lau M.J., Abrazado M., Storer T., Cooper C. (2013). Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat percentage. Journal of Exercise Physiology Online, 16: 74-83.
Franchi M.V., Atherton P.J., Reeves N.D., Flück M., Williams J., Mitchell W.K., et al. (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica, 210(3): 642-54. https://doi.org/10.1111/apha.12225 DOI: https://doi.org/10.1111/apha.12225
Füzéki E., Groneberg D.A., Banzer W. (2020). Physical activity during COVID-19 induced lockdown: Recommendations. Journal of Occupational Medicine and Toxicology, 15: 25. https://doi.org/10.1186/s12995-020-00278-9 DOI: https://doi.org/10.1186/s12995-020-00278-9
Gabriel D.A., Kamen G., Frost G. (2006). Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine, 36(2): 133-49. https://doi.org/10.2165/00007256-200636020-00004 DOI: https://doi.org/10.2165/00007256-200636020-00004
Harris-Love M.O., Gollie J.M., Keogh J.W. (2021). Eccentric exercise: Adaptations and applications for Health and Performance. Journal of Functional Morphology and Kinesiology, 6(4): 96. https://doi.org/10.3390/jfmk6040096 DOI: https://doi.org/10.3390/jfmk6040096
Hather B.M., Tesch P.A., Buchanan P., Dudley G.A. (1991). Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiologica Scandinavica, 143(2): 177-85. https://doi.org/10.1111/j.1748-1716.1991.tb09219.x DOI: https://doi.org/10.1111/j.1748-1716.1991.tb09219.x
Higbie E.J., Cureton K.J., Warren G.L., Prior B.M. (1996). Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. Journal of Applied Physiology, 81(5): 2173-81. https://doi.org/10.1152/jappl.1996.81.5.2173 DOI: https://doi.org/10.1152/jappl.1996.81.5.2173
Hoare E., Stavreski B., Jennings G.L., Kingwell B.A. (2017). Exploring motivation and barriers to physical activity among active and inactive Australian adults. Sports, 5(3): 47. https://doi.org/10.3390/sports5030047 DOI: https://doi.org/10.3390/sports5030047
Klemp, A., Dolan, C., Quiles, J. M., Blanco, R., Zoeller, R. F., Graves, B. S., & Zourdos, M. C. (2016). Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Applied physiology, nutrition, and metabolism, 41(7): 699-705. https://doi.org/10.1139/apnm-2015-0707 DOI: https://doi.org/10.1139/apnm-2015-0707
Lobelo F., Rohm Young D., Sallis R., Garber M.D., Billinger S.A., Duperly J., et al. (2018). Routine Assessment and Promotion of Physical Activity in Healthcare Settings: A Scientific Statement From the American Heart Association. Circulation, 137(18): e495-e522. https://doi.org/10.1161/CIR.0000000000000559 DOI: https://doi.org/10.1161/CIR.0000000000000559
Mallinson, J. E., Taylor, T., Constantin-Teodosiu, D., Billeter-Clark, R., Constantin, D., Franchi, M. V., Narici, M. V., Auer, D., & Greenhaff, P. L. (2020). Longitudinal hypertrophic and transcriptional responses to high-load eccentric-concentric vs concentric training in males. Scandinavian journal of medicine & science in sports, 30(11): 2101-2115. https://doi.org/10.1111/sms.13791 DOI: https://doi.org/10.1111/sms.13791
McBride, J. M., McCaulley, G. O., Cormie, P., Nuzzo, J. L., Cavill, M. J., & Triplett, N. T. (2009). Comparison of methods to quantify volume during resistance exercise. Journal of strength and conditioning research, 23(1), 106-110. https://doi.org/10.1519/JSC.0b013e31818efdfe DOI: https://doi.org/10.1519/JSC.0b013e31818efdfe
Nosaka K. & Clarkson P.C. (1997). Influence of previous concentric exercise on eccentric exercise-induced muscle damage, Journal of Sports Sciences, 15:5, 477-483. https://doi.org/10.1080/026404197367119 DOI: https://doi.org/10.1080/026404197367119
Norrbrand L., Fluckey J.D., Pozzo M., Tesch P.A. (2008). Resistance training using eccentric overload induces early adaptations in skeletal muscle size. European Journal of Applied Physiology 102(3): 271-81. https://doi.org/10.1007/s00421-007-0583-8 DOI: https://doi.org/10.1007/s00421-007-0583-8
Padulo J., Laffaye G., Chamari K., Concu A. (2013). Concentric and eccentric: Muscle contraction or exercise? Sports Health, 5(4): 306. https://doi.org/10.1177/1941738113491386 DOI: https://doi.org/10.1177/1941738113491386
Peterson, M. D., Pistilli, E., Haff, G. G., Hoffman, E. P., & Gordon, P. M. (2011). Progression of volume load and muscular adaptation during resistance exercise. European journal of applied physiology, 111(6): 1063-1071. https://doi.org/10.1007/s00421-010-1735-9 DOI: https://doi.org/10.1007/s00421-010-1735-9
Proske U. & Morgan D.L. (2001). Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. The Journal of Physiology, 537(Pt 2): 333-45. https://doi.org/10.1111/j.1469-7793.2001.00333.x DOI: https://doi.org/10.1111/j.1469-7793.2001.00333.x
Radák Z. (2018). Skeletal muscle, function, and muscle fiber types. The Physiology of Physical Training, 15-31. https://doi.org/10.1016/B978-0-12-815137-2.00002-4 DOI: https://doi.org/10.1016/B978-0-12-815137-2.00002-4
Radaelli, R., Fleck, S. J., Leite, T., Leite, R. D., Pinto, R. S., Fernandes, L., & Simão, R. (2015). Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. Journal of strength and conditioning research, 29(5): 1349-1358. https://doi.org/10.1519/JSC.0000000000000758 DOI: https://doi.org/10.1519/JSC.0000000000000758
Schoenfeld B.J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of strength and conditioning research, 24(10): 2857-2872. https://doi.org/10.1519/JSC.0b013e3181e840f3 DOI: https://doi.org/10.1519/JSC.0b013e3181e840f3
Seger J.Y., Arvidsson B., Thorstensson A. (1998). Specific effects of eccentric and concentric training on muscle strength and morphology in humans. European Journal of Applied Physiology and Occupational Physiology, 79(1): 49-57. https://doi.org/10.1007/s004210050472 DOI: https://doi.org/10.1007/s004210050472
Sooneste, H., Tanimoto, M., Kakigi, R., Saga, N., & Katamoto, S. (2013). Effects of training volume on strength and hypertrophy in young men. Journal of strength and conditioning research, 27(1): 8-13. https://doi.org/10.1519/JSC.0b013e3182679215 DOI: https://doi.org/10.1519/JSC.0b013e3182679215
Warburton D.E., Gledhill N., Jamnik V.K., Bredin S.S., McKenzie D.C., Stone J., Charlesworth S., Shepherd R.J. (2011). Evidence-Based Risk Assessment and Recommendations for Physical Activity Clearance: Consensus Document 2011. Appl. Physiol. Nutr. Metab. 36 Suppl 1, S266-98. https://doi.org/10.1139/h11-062 DOI: https://doi.org/10.1139/h11-062
Zainuddin Z., Sacco P., Newton M., Nosaka K. (2006). Light concentric exercise has a temporarily analgesic effect on delayed-onset muscle soreness, but no effect on recovery from eccentric exercise. Applied Physiology, Nutrition, and Metabolism 31(2): 126-34. https://doi.org/10.1139/h05-010 DOI: https://doi.org/10.1139/h05-010