Accuracy of body fat percentage measurements from a smartphone-based 3D application compared to a bioelectrical impedance analyser
Main Article Content
Abstract
Conventional methods of assessing body composition are accurate but may not be accessible beyond clinical settings. While technological advances have led to the development of more convenient alternative measures, their accuracy has yet to be determined. The present investigation assessed the accuracy of a smartphone-based 3D application’s measurements of body fat percentage in comparison to a bioelectrical impedance analyser (BIA), a well-established criterion measure. Sixty-nine apparently healthy, college-aged adults had their body fat percentage measured with BIA followed by the smartphone-based application. Spearman’s rank correlation was calculated to be 0.98 (95% CI: 0.92, 0.99), indicating a very strong correlation between the two BF percentage measures. The bias observed between the two devices was low (0.2% [95% CI: -0.1, 0.5]) with limits of agreement spanning from -2.9% (95% CI: -3.4, -2.3) to 3.2% (95% CI: 2.7, 3.8). Given the strong overall agreement between the two modalities, this smartphone-based application may have the potential to make accurate body fat measurements more accessible. Further validation is needed in more diverse populations and against other criterion measures, such as dual-energy x-ray absorptiometry (DXA).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Anisuzzaman D.M., Hosne Al Walid Md., Saifuddin Saif A.F.M. (2019). Online Trial Room based on Human Body Shape Detection. IJIGSP, 11(2): 21-29. https://doi.org/10.5815/ijigsp.2019.02.03 DOI: https://doi.org/10.5815/ijigsp.2019.02.03
Bennett J.P., Liu Y.E., Quon B.K., Kelly N.N., Wong M.C., Kennedy S.F., Chow D.C., Garber A.K., Weiss E.J., Heymsfield S.B., Shepherd J.A. (2022). Assessment of clinical measures of total and regional body composition from a commercial 3-dimensional optical body scanner. Clin. Nutr. ESPEN, 41(1): 211-218. https://doi.org/10.1016/j.clnu.2021.11.031 DOI: https://doi.org/10.1016/j.clnu.2021.11.031
Bland J.M. & Altman D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327(8476): 307-310. https://doi.org/10.1016/S0140-6736(86)90837-8 DOI: https://doi.org/10.1016/S0140-6736(86)90837-8
Bland J.M. & Altman D.G. (1999). Measuring agreement in method comparison studies. Stat. Methods Med. Res., 8(2): 135-160. https://doi.org/10.1177/096228029900800204 DOI: https://doi.org/10.1191/096228099673819272
Bray G.A., Heisel W.E., Afshin A., Jensen M.D., Dietz W.H., Long M., Kushner R.F., Daniels S.R., Wadden T.A., Tsai A.G., Hu F.B., Jakicic J.M., Ryan D.H., Wolfe B.M., Inge T.H. (2018). The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev., 39(2): 79-132. https://doi.org/10.1210/er.2017-00253 DOI: https://doi.org/10.1210/er.2017-00253
Castro E.A., Carraça E.V., Cupeiro R., López-Plaza B., Teixeira P.J., González-Lamuño D., Peinado A.B. (2020). The Effects of the Type of Exercise and Physical Activity on Eating Behavior and Body Composition in Overweight and Obese Subjects. Nutrients, 12(2): 557. https://doi.org/10.3390/nu12020557 DOI: https://doi.org/10.3390/nu12020557
Daanen H.A.M. & Ter Haar F.B. (2013). 3D whole body scanners revisited. Displays, 34(4): 270-275. https://doi.org/10.1016/j.displa.2013.08.011 DOI: https://doi.org/10.1016/j.displa.2013.08.011
Derouchey J.D., Tomkinson G.R., Rhoades J.L., Fitzgerald J.S. (2020). Reliability of the Styku 3D Whole-Body Scanner for the Assessment of Body Size in Athletes. Meas. Phys. Educ. Exerc. Sci., 24(3): 228-234. https://doi.org/10.1080/1091367X.2020.1791124 DOI: https://doi.org/10.1080/1091367X.2020.1791124
de Souza J. W. M. et al. (2020). Predicting body measures from 2D images using Convolutional Neural Networks. Int. Jt. Conf. Neural Netw., 1-6. https://doi.org/10.1109/IJCNN48605.2020.9207330 DOI: https://doi.org/10.1109/IJCNN48605.2020.9207330
Dolezal B., Lau M.J., Abrazado M., Storer T., Cooper C. (2013). Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat percentage. Journal of Exercise Physiology Online, 16: 74-83.
Duren, D. L., Sherwood, R. J., Czerwinski, S. A., Lee, M., Choh, A. C., Siervogel, R. M., & Cameron Chumlea, W. (2008). Body composition methods: comparisons and interpretation. J Diabetes Sci Technol., 2(6): 1139-1146. https://doi.org/10.1177/193229680800200623 DOI: https://doi.org/10.1177/193229680800200623
Florez C.M., Rodriguez C., Siedler M.R., Tinoco E., Tinsley G.M. (2024). Body composition estimation from mobile phone three-dimensional imaging: evaluation of the USA army one-site method. BJN, 132(9): 1-9. https://doi.org/10.1017/S0007114524002216 DOI: https://doi.org/10.1017/S0007114524002216
Foysal K.H., Chang H.-J., Bruess F., Chong J.-W. (2021). Body Size Measurement Using a Smartphone. Electronics, 10(11): 1338. https://doi.org/10.3390/electronics10111338 DOI: https://doi.org/10.3390/electronics10111338
Frank A.P., de Souza Santos R., Palmer B.F., Clegg D.J. (2019). Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J. Lipid Res., 60(10): 1710-1719. https://doi.org/10.1194/jlr.R086975 DOI: https://doi.org/10.1194/jlr.R086975
Fried S.K., Lee M-J., Karastergiou K. (2015). Shaping fat distribution: New insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity, 23(7): 1345-1352. https://doi.org/10.1002/oby.21133 DOI: https://doi.org/10.1002/oby.21133
Frija-Masson J., Mullaert J., Vidal-Petiot E., Pons-Kerjean N., Flamant M., d'Ortho M. (2021). Accuracy of Smart Scales on Weight and Body Composition: Observational Study. JMIR Mhealth Uhealth, 9(4): e22487. https://doi.org/10.2196/22487 DOI: https://doi.org/10.2196/22487
Ghasemi A. & Zahediasl S. (2012). Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int J Endocrinol Metab, 10(2): 486-489. https://doi.org/10.5812/ijem.3505 DOI: https://doi.org/10.5812/ijem.3505
Giavarina D. (2015). Understanding Bland Altman analysis. Biochem Med (Zagreb), 25:141-151. https://doi.org/10.11613/BM.2015.015 DOI: https://doi.org/10.11613/BM.2015.015
Harty P.S., Sieglinger B., Heymsfield S.B. et al. (2020). Novel body fat estimation using machine learning and 3-dimensional optical imaging. Eur J Clin Nutr 74, 842-845. https://doi.org/10.1038/s41430-020-0603-x DOI: https://doi.org/10.1038/s41430-020-0603-x
Heyward V. (2001). ASEP methods recommendation: body composition assessment. J Exerc Physiol Online., 4: -12.
Holmes C.J. & Racette S.B. (2021). The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients, 13(8): 2493. https://doi.org/10.3390/nu13082493 DOI: https://doi.org/10.3390/nu13082493
Lees C.J., Lees B., Stevenson J.C. (1992). Sex- and menopause-associated changes in body-fat distribution. Am J Clin Nutr., 55(2): 950-954. https://doi.org/10.1093/ajcn/55.5.950 DOI: https://doi.org/10.1093/ajcn/55.5.950
Link J.C., Hasin-Brumshtein Y., Cantor R.M. et al. (2017). Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics 18(89). https://doi.org/10.1186/s12864-017-3484-1 DOI: https://doi.org/10.1186/s12864-017-3484-1
Majmudar M.D., Chandra S., Yakkala K. et al. (2022). Smartphone camera based assessment of adiposity: a validation study. npj Digit. Med. 5(79). https://doi.org/10.1038/s41746-022-00628-3 DOI: https://doi.org/10.1038/s41746-022-00628-3
Medina-Inojosa J., Somers V.K., Ngwa T., Hinshaw L., Lopez-Jimenez F. (2016). Reliability of a 3D Body Scanner for Anthropometric Measurements of Central Obesity. Obes Open Access, 2(3). https://doi.org/10.16966/2380-5528.122 DOI: https://doi.org/10.16966/2380-5528.122
Neufeld E.V., Seltzer R.A., Sazzad T., Dolezal B.A. (2020). A Multidomain Approach to Assessing the Convergent and Concurrent Validity of a Mobile Application When Compared to Conventional Methods of Determining Body Composition. Sensors, 20(21): 6165. https://doi.org/10.3390/s20216165 DOI: https://doi.org/10.3390/s20216165
Ng B.K., Sommer M.J., Wong M.C., Pagano I., Nie Y., Fan B., Kennedy S., Bourgeois B., Kelly N., Liu Y.E., Hwaung P. et al. (2019). Detailed 3-dimensional body shape features predict body composition, blood metabolites, and functional strength: the Shape Up! studies. Am J Clin Nutr., 110(6): 1316-1326. https://doi.org/10.1093/ajcn/nqz218 DOI: https://doi.org/10.1093/ajcn/nqz218
Okorodudu D., Jumean M., Montori V. et al. (2010). Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes., 34, 791-799. https://doi.org/10.1038/ijo.2010.5 DOI: https://doi.org/10.1038/ijo.2010.5
Pepper M.R., Freeland-Graves J.H., Yu W., Stanforth P.R., Cahill J.M., Mahometa M., Xu B. (2010). Validation of a 3-Dimensional Laser Body Scanner for Assessment of Waist and Hip Circumference. J Am Coll Nutr, 29(3): 179-188. https://doi.org/10.1080/07315724.2010.10719832 DOI: https://doi.org/10.1080/07315724.2010.10719832
Porterfield F., Shapoval V., Langlet J., Samouda H., Stanford F.C. (2024). Digital Biometry as an Obesity Diagnosis Tool: A Review of Current Applications and Future Directions. Life, 14(8): 947. https://doi.org/10.3390/life14080947 DOI: https://doi.org/10.3390/life14080947
Santanasto A.J., Goodpaster B.H., Kritchevsky S.B., Miljkovic I., Satterfield S., Schwartz A.V., Cummings S.R., Boudreau R.M., Harris T.B., Newman A.B. (2017). Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. Gerontol A Biol Sci Med Sci., 72(4): 513-519. https://doi.org/10.1093/gerona/glw163 DOI: https://doi.org/10.1093/gerona/glw163
Schober P., Boer C., Schwarte L.A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesth Analg., 126(5): 1763-1768. https://doi.org/10.1213/ANE.0000000000002864 DOI: https://doi.org/10.1213/ANE.0000000000002864
Schuster A.M., Cotten S.R., Meshi D. (2023). Established Adults, Who Self-Identify as Smartphone and/or Social Media Overusers, Struggle to Balance Smartphone Use for Personal and Work Purposes. J. Adult Dev., 30(1): 78-89. https://doi.org/10.1007/s10804-022-09426-3 DOI: https://doi.org/10.1007/s10804-022-09426-3
Taylor K.M., Castellani M.P., Bartlett P.M., Oliver T.E., McClung H.L. (2024). Development and cross-validation of a circumference-based predictive equation to estimate body fat in an active population. Obes sci pract., 10(2): e747. https://doi.org/10.1002/osp4.747 DOI: https://doi.org/10.1002/osp4.747
Taylor R.W., Grant A.M., Williams S.M., Goulding A. (2012). Sex Differences in Regional Body Fat Distribution From Pre- to Postpuberty. Obesity, 18(7): 1410-1416. https://doi.org/10.1038/oby.2009.399 DOI: https://doi.org/10.1038/oby.2009.399
Tinsley G.M., Rodriguez C., Florez C.M., Siedler M.R., Tinoco E., McCarthy C., Heymsfield S.B. (2024). Smartphone three-dimensional imaging for body composition assessment using non-rigid avatar reconstruction. Front. Med. 11:1485450. https://doi.org/10.3389/fmed.2024.1485450 DOI: https://doi.org/10.3389/fmed.2024.1485450
Zheng Y., Klem M.L., Sereika S.M., Danford C.A., Ewing L.J., Burke L.E. (2014). Self-weighing in weight management: A systematic literature review. Obesity, 23(2): 256-265. https://doi.org/10.1002/oby.20946 DOI: https://doi.org/10.1002/oby.20946